Written by Lisa Walsh

Developer’s Success Story – A Solar Integrated Green Roof in NE DC

By Lisa Walsh | Commercial Solar Developer | Solar Energy Services, Inc.

For the newly-finished Taylor Street Storage facility in North East DC, a 17,500 square foot green roof with fully integrated solar panel array that showcase a value-stacked, elegant design providing both a cost-effective solution to storm-water management. All without forfeiting the solar panels that generate income via federal tax incentives and DC’s superb solar production-based financial incentives.


With over three million square feet of green roofs in Washington DC and 50MW+ of solar installations – the City is no stranger to either technology. However, the integration of both on the same roof is less common, despite the symbiotic relationship between the two offering a number of advantages.


Beds of Sedums awaiting Fall planting at Taylor Street Storage, Oct 2018.
Photo Credit – David Gorman of Lock 7 Development

Completed 133.980kW Solar-Integrated Green Roof at Taylor St NE WDC
Photo Credit – David Gorman of Lock 7 Development

Storm-water Management


Approval for a commercial building permit in Washington DC must include a storm-water management plan as defined by DC’s Department of Energy and the Environment (DOEE). For Taylor St, the Development team could have chosen between:

  1. Lost parking spaces to house costly underground containers for capturing and storing runoff
  2. Payment of ever-increasing storm-water management fees
  3. Implementation of a multi-layered Green Roof to treat 100% of the rainfall obligation with a perennial, sedum based plant surface – as per DOEE requirements.
    The green roof offered a cost-effective storm-water management solution that required no additions or demo’s to the existing structure.
    Solar Panels

Solar Panels

Most savvy developers realize that an empty roof in Washington DC is money left on the table. With the best solar financial incentives in the USA, the payback is rapid followed by years of production-based paydays. Small wonder that the development team at Taylor Street were interested if – and how – a solar array could integrate with a Green Roof. The good news is not only does the solar system seamlessly integrate with the green roof but the relationship is one of symbiosis and cost-effectiveness. Here’s why:

BALLAST. Most solar systems installed on DC’s commercial flat roof areas are ballasted. i.e. an assortment of concrete blocks, along with the weight of the solar panels and racking, is engineered to hold down the weight of the array with minimal or no penetrations to the roof membrane.
With close to 35 PSF of weight, a green roof more-than provides this ballast negating the need for concrete blocks or supplemental attachments. This is worth mentioning as the Green Roof is now a fully engineered component of the solar system bringing the question of tax credit eligibility into play. Is the Green Roof, or portion of, now eligible for the 30% Federal Tax Credit? Certainly worth conferring with a tax adviser.

A close up of the Solar System mounted into the soil on the roof.

CREATION OF A MICRO-CLIMATE: Furbish designs their perennially healthy green roofs with a wide palette of sedum species. These drought-resistant succulants require little maintenance and have varying requirements for daily sunlight – from full-sun to all-shade. Contrary to first impressions the intermittent shading and weather protection provided by the solar panels provide a micro-climate highly conducive to the plants underneath, in between and around the solar arrays.

DESIGN: Most ballasted solar systems have ample aisles between each row of solar panels insuring that each solar panel is optimized and avoiding shading from the panel row in front. Solar panels can also be tilted anywhere between 5 and 35 degrees. This is adjusted to account for shading, panel count and orientation considerations. This flexibility of design was helpful for integration the green roof. Aisle spacing, solar panel size and tilt were designed with the Green roof in mind – not only as it relates to healthy plants, but also for annual maintenance access requirements.

Established Example featuring similar product and design as Taylor Street


CHALLENGES: Solar-integrated green roofs are not as common as their singular counterparts. Fair to say this project did not come without some challenges


DOEE DESIGN STANDARDS: Department of Energy and Environment is responsible for DC’s Stormwater Management and insuring all DC buildings comply with runoff standards. The burden was on SES and Furbish to ensure that the solar arrays were not going to impede the ability of the plants to thrive and provide the necessary water retention requirements. The design and permitting side of the project insofar as panel tilt, aisle spacing and racking integration were designed in collaboration with DOEE.


INSTALLATION TIMELINES: Furbish Company are Green Roof specialist, Solar Energy Services, Inc. are solar specialists. Integrating these technologies took heightened coordination between our installation teams, mostly in terms of labor efficiency, communication and timeliness. The latter was particularly stringent as the Certificate of Occupancy, required to meet the developer’s lease requirements, was contingent upon the completion of the Green Roof which now included solar racking, wiring and panel installations. Throw in some PEPCO Permission to Install challenges related to the solar portion, and the pressure was on.


The project came with some unusual PEPCO interconnection timing challenges at the end. Ironically not related to the Green Roof aspect of the application. Nonetheless, this system is now outputting electricity like gangbusters. All’s well that’s ends well.

Written by Rick Peters

Maryland Solar – Ready to Grow Again

For many years, Maryland has been a leader in solar policy and solar deployment.  In the last 3 years, we’ve fallen behind other states, watching our robust growth give way to several years of decline.  It’s almost hard to believe, but Maryland has been losing solar jobs for more than two years after peaking at approximately 5300 in late 2016.

Policy Clouds

Why is this happening?  One of the biggest reasons is the value of the state solar production incentive, the SREC (Solar Renewable Energy Certificate).  Those of you who own solar or have considered buying solar are probably all too familiar with SREC pricing.  Because Maryland property owners adopted so much solar in the first half of the decade, we outpaced the state’s goals, depressing the value of the market-based SREC incentive.  This was a good problem for the industry to have until it became clear that our goal (25% renewables by 2025 with 2.5% solar by 2022) was clearly not aggressive enough.

The Time is Now

We are now at a time of severe urgency for the Maryland solar industry.  With installations on the decline for over two years and job losses mounting, we are losing a trained employment base and leaving federal tax benefits on the table.   The solar industry has been working with other coalition members (wind industry, environmental organizations, etc.) for a few years to try to increase the state’s Renewable Portfolio Standard (RPS), but have been hampered by the Hogan Administration’s reluctance to incentivize more renewables until the completed RPS Study Report is released.  The study was due to be released in December of 2018, but has been delayed and some fear this is intended to stall an RPS increase for another year.  We cannot wait.

Governor Hogan has gone on record with his desire to fight climate change.  He recently coauthored an OpEd in the Washington Post with Virginia’s Democratic Governor, Ralph Northam to emphasize the urgency and the need for bipartisan solutions to climate change.  It is in this bipartisan spirit that we hope to see the Hogan Administration support the Maryland General Assembly in passing the Clean Energy Jobs Act
(CEJA)(SB0516, HB1158) of 2019 that will increase our renewable energy goal to 50% and the solar portion to 14.7 %. “Click here to read more about this

No-Brainer Investment for Maryland

One of the primary arguments against increasing the RPS has to do with the impact on utility ratepayers.  The preliminary indication is that the increased renewable goals associated with the CEJA will add approximately $1.85/mo. to the average electricity bill.  While this is not insignificant, it is important to note that a 2018 Daymark study, commissioned by the Hogan Administration’s Public Service Commission, found that for every $1.00 of investment in solar, we return approximately $5.00 in economic and health benefits to the state.   Solar jobs are good jobs that pay well, representing a path to economic stability for many installers.  And best of all, solar installation jobs cannot be exported.

We need YOUR help

As a solar advocate, we ask that you commit to express your support for CEJA in the Maryland legislative session this year.  The bill has been submitted and we should have a bill number shortly.  In the meantime, please continue to advocate for more solar whenever you can and be prepared to contact your Maryland state legislators to support this important legislation when the time comes.  Stay tuned for a special email notification with the bill number, and suggested talking points in the coming weeks.

Written by Rick Peters

Solar is Booming in Washington DC

Washington DC has been a leader in solar development for many years.  In the last 12 years, DC legislators have set aggressive targets, helped to streamline solar permitting, introduced a solar access rights law, and passed a landmark community solar bill to increase access to solar for those without an available sunny rooftop.   Many of these policies include mechanisms to help bring the benefits of solar to communities of low and moderate income.  The collaboration between the solar industry and DC policymakers has helped to build a robust market where solar installations are happening throughout the city, from downtown office buildings to churches, warehouses and residential rooftops across the city.   These policies and the resulting private investments are creating good jobs in the District and reduced energy costs for many of its residents.

Double Down

Since solar and clean energy have been delivering in DC, the stakeholders decided they wanted a more ambitious goal.  In the summer of 2018 the District started on a path to double down with their commitment to renewable energy by proposing the most aggressive renewable energy target in the country when compared to other state policies.  The new goal calls for 100% clean energy (5.5% solar) by the year 2032, with 10% solar by 2041.  Hawaii and California are the only other states that have 100% goals, but both of those targets are positioned for 2045, quite a few years later than DC. 

Other Benefits of the legislation

In addition to doubling the renewable energy target, the proposed legislation would provide a few more benefits to solar advocates.  The bill:

  1. Limits geographic eligibility over time to concentrate the solar development in the District or on the District’s grid
  2. Pulls the current solar carve-out schedule forward by two years to increase SREC demand
  3. Extends the solar carve-out from 5.5% in 2032 to 10% by 2041
  4. Addresses specifics about previously contracted (“grandfathered”) load that is exempted from the newest RPS
  5. Includes transparency requirements on the energy suppliers to provide insight into the exempted load and associated time periods
  6. Modifies Alternative Compliance Payment (ACP) schedules to require $300 ACPs through 2041
  7. Increases the shelf-life of an SREC from three to five years, increasing SREC price liquidity and stability.
  8. Introduces various reporting requirements on the Public Service Commission in order to keep the Council and the Public apprised of the progress of renewable energy development.

We’re in the Home Stretch

The Clean Energy DC Omnibus Amendment Act of 2018 was introduced in July 2018 and made its way through the Council over the fall with hearings and two unanimous votes of support on November 27th and December 18th.  In January, the bill was submitted to Mayor Bowser for her signature and she obliged on January 18thClick here to read the bill“.   The remaining hurdle is for approval by the US Congress within 30 legislative days.  The only way that Congress can stop this legislation is with a joint resolution and the President’s signature.  As a result, passage into law is considered by most to be inevitable and in fact we are seeing market pricing for SRECs responding accordingly.

Thank your Legislators

So now that the law is almost passed, it is time to prepare to deliver.  The industry has a lot of solar to build and we’re working hard at that.  As a solar advocate who cares about renewable energy in DC, please consider taking a few moments to call or write to your Councilmember to thank them for their support of Clean Energy DC Omnibus Amendment Act of 2018.  It’s always important to show our gratitude.

Thank you for your support of solar!

Written by John Marrah III

Buy American and Save

For the month of February SES is offering $1000 off of any solar system that includes US Manufactured Panels.  That’s right, support US manufacturing and Save!  All you have to do is reference this offer during or before your site visit.

Here’s 5 More Reasons Why:

1.    Provides Jobs

The Solar Industry’s growth and inherent job creation is no secret, we are leading the pack among every other industry nationwide. Most of these jobs are being created on the installation side, but we also need to support the rest of the value chain.

2.    American Independence Includes Energy Independence

We as Americans have pride in our nation and in our independence. By generating our energy locally, with renewable resources, and US products, we strengthen our country and our independence, both individually and collectively as Americans.

3.    Do It for The Environment

Current technologies allow manufacturers in the US to support a greener, cleaner solar manufacturing process. If we invest in American-made products, we strengthen our manufacturing base, support US jobs, while insuring  that we are doing our part to contribute to a cleaner environment for ourselves, and the generations to come. Also, by reducing the need to ship overseas, the net carbon footprint is much lower

4.    We Control Labor Standards, They Don’t

The US is a leader in fair labor and safety standards. With minimum wage and safety regulations in the workplace being upheld, you can be sure that your panels are made by people who are being supported and treated fairly in the workplace.

5.    Guaranteed Quality of Goods

The term “Made in the USA” speaks of quality, excellent craftsmanship and a superior product. With a lower cost of labor abroad, many factories rely on fabrication and assembly processes by hand. This introduces higher rates of  failure when compared to the American Standard of automated soldering and assembly. While panel quality continues to improve in the aggregate, US products remain the leaders in quality and performance.  Price tags are slightly higher for Made in USA products, but you find true value among longevity and performance.

Home Solar Panels Solar Service
Written by Rick Peters

Solar Plus Storage is Ready for Prime-Time Backup Power for your Home

As we’ve seen the cost of solar drop rapidly in the last ten years (more than 80%), we continued to endure those naysayers in the distance arguing that “no matter how cheap you make solar; much like wind, it will never dominate the energy landscape because of intermittency.” It’s hard to believe people still say “Never” in the context of technology? That term only provokes our great American drive and ingenuity, which continues to deliver. Witness electric storage costs have dropped 80% in the last eight years, outpacing the dramatic solar cost reductions!

Battery technology today

Today, electric batteries continue to back up solar in more and more markets every year. Batteries are giving solar system owners a lot more control and choice about energy independence, while giving grid operators a game changing tool to help manage the modern grid with greater economic efficiency. We’ll talk more about the how and why, later in this post.

Storage market is heating up

So far SES has contracted for 7 battery installs already this year in Maryland, up dramatically from 2017. The residential solar plus storage market has begun to take off in many markets. In fact, the preferred battery suppliers were out of stock for more than 4 months this year, both from increased demand to complement solar projects, but also due to the soaring demand increase for Electric Vehicles (EVs) that use the same battery technologies.

Storage is like bacon

Why is storage so valuable? One of my favorite energy experts, Katherine Hamilton (https://38northsolutions.com/team/bios/) once said that “storage is like bacon, it makes everything better.” Storage has almost a dozen value streams that can be monetized now or in the future. The two biggest and most obvious value streams are that it can provide extra capacity in times of high demand, and it can provide extra demand in times of excess capacity. In both cases, it provides stabilizing value to the grid and more efficient use of generating assets.

A testament to the value of storage on the grid was seen several years ago when the California Public Utilities Commission required utilities to procure a minimum amount of storage. Not only did the major utilities comply, they all procured more storage than mandated. They are well aware, storage helps them modulate an increasingly dynamic and decentralized grid.

Residential Solar Panels Anne Arundel County MD

Why should I consider solar plus storage for my home?

If you deploy solar along with your energy storage solution, you can utilize the same federal tax benefits as you do for solar, namely the 30% investment tax credit. In Maryland, you are eligible for an income tax credit on the storage portion of the system, in addition to the other state solar incentives (https://energy.maryland.gov/business/Pages/EnergyStorage.aspx). As a result, the economics in Maryland for residential solar + storage are much improved from a few years ago.

The main reason our residential customers are deploying energy storage is for backup power during a grid outage. This is typically done by way of an essential loads subpanel in their electric system. SES often installs these subpanels as part of our solar + storage project.

Another factor driving this trend is a residential customer’s desire to position themselves to cut the cord in the future, if the utility relationship becomes unappealing or uneconomical for them.

Lastly, future changes to electric rate design and/or net metering policy, could present solar + storage owners the ability to increase their savings or even generate revenue from the services that their frequently-idle storage can provide.

Are you building a new home and want to be sure it is ready for the energy architecture of the future? It’s easier than you think. Ask your builder or electrician to insure you have an essential loads subpanel (to use with electric battery storage, or possibly a generator). Secondly, request they install an empty (capped) electrical conduit from attic to electric room for us to easily add your solar energy conducting wire in the future.

Please see Roger Perry’s technical writeup on residential storage applications recently implemented by SES.

What has brought about this market opportunity?

Electric storage has long been an essential part of any true off-grid solar/wind application and this is where the earliest developments have taken place. As solar began to penetrate the grid in the last 10 years, there has been a lot of R&D investment in this future “holy grail” of renewable energy development. The investment is now paying off.

Storage broke into the US grid-tied market about five years ago. In the case of Hawaii, it was mostly a market driven change. Extremely expensive power, a grid congested with rapid solar growth, denials and delays of solar interconnection applications, and abundant sunshine, all contributed to the new paradigm. This resulted in economics that justified a certain segment of residential customers in Hawaii to cut the cord and embrace storage as a long-term solution. This sent an alarming message to utilities around the world: You better embrace these changes or plan to go the way of the buggy whip!

At about the same time, California’s PUC mandated a specific quantity of storage on the grid, much of it behind the meter. The utilities went on to exceed that mandate in the first auction and later in 2017, the target was increased again, with little to no resistance. In the past year, we’ve seen California utilities choose new battery storage over new gas fired peaker plants to meet peak loads in three separate cases. This is a tremendous validation of the economics of storage, particularly in an age of record low natural gas prices.

What’s ahead for energy storage?

The horse is out of the barn. Distributed energy generation combined with storage, will be the foundation of the future electric grid. The role that storage will play in this transformation will be enormous at the macro level, but somewhat uncertain at the micro level due to regulatory policy, incentives, and local market conditions.

We should expect to see strong storage growth in markets with the following attributes:

  • Places where local or state incentives are promoting storage – Maryland is one of them.
  • Markets where system owners can capture supplemental revenue from their storage investments (Our grid operator, PJM has piloted bundling distributed storage as a revenue generating resource for storage system owners)
  • Markets with high electric rates or Time of Use (TOU) rates.
  • Markets where electric “demand charges” represent a large cost for commercial and industrial (C&I) customers. This is because storage can dramatically lower a building’s electricity demand profile, and thus add energy bill relief to a portion of the bill where solar has had limited impact.
  • Microgrids are increasingly popular, particularly with campus style environments and military installations. These applications will increase storage demand and further drive down costs through scale and experience.

Next steps

Be sure to contact SES if you are interested in solar + storage. We will be happy to design a system that is customized to your needs. As always, we’ll provide you all the support you need to capture the Maryland solar grant and the storage tax credit (which has a limited budget) so contact us right away.

Home Solar Panel ,Solar Service
Written by Rick Peters

Peters’ Journey to Net Zero

Solar Service,Home Solar PanelsWhat Net Zero Meant for Us? Our Severna Park based, four-person family was looking to offset some of our home’s dirty energy, but we really did not have an expectation we could offset it all, but we had to start somewhere. We took our first step shortly after I joined the solar industry in 2008.

Low Hanging Fruit. In February 2009, we installed a 120-square foot solar water heating system to offset most of our water heating, and a small portion of our space heating for the first floor of our home. We saw big savings from this 3-panel system right away. Ever since, I enjoy the act of turning off the back-up water heating in April and leaving it off until almost October. For us, offsetting a dirty and expensive oil-fired boiler was the obvious low hanging fruit. We would later convert that remaining load to natural gas when the utility extended the pipeline to our home.

Solar Electric (PV) With the rest of the heat, A/C, and appliances all running off electric, it was time to look at the next opportunity. A few years later, when budget allowed, we decided to add a 5 kW solar PV system to our second story roof which faces SSE. My best determination was that we offset just over 40% of our electric load with that PV system. We were happy, but knew we’d want to find a way to get to NetZero eventually. , . I began to evaluate the remaining rooftops and consider what it would take to get us there. Solar panel efficiencies had improved a lot over the past several years so this reduced the remaining roof space we’d need to hit our goal

Phase 2 (PV). In the spring of 2016 we finished filling the balance of the south roof with some slightly higher wattage panels. As part of the same expansion, we added 24 relatively high efficiency panels to the E/W, low slope, rooftop of our one-story garage. We now had a total of 6.6 kW Equivalent of solar thermal and 13.8 kW of PV.

Not There Yet….We almost tripled our PV with the last upgrade and according to my calculations, this would get us to NetZero electricity. We’d know for sure by April, the annual true-up time frame for netmetering with BGE. When April 2017 came around, we were disappointed to come up a bit short (unfortunately, with a couple teenagers in the house, my usage predictions were a little off). Where do we go from here? I was not ready to put panels on the north roof, there had to be something available to us on the demand side.

Oops – More Low Hanging Fruit…One thing about Energy Efficiency, there’s always more opportunity. I had changed out many bulbs to LED over the prior several years, mostly through attrition, but I had not replaced any of the more than 2 dozen canister lights we had throughout the ceiling upstairs and down. Not only were these lights very inefficient, but the heat they generated in the summer was just adding to our air-conditioning load. We found the LED replacements on sale and replaced them all, as well as the remaining few incandescent lights in the house.

Commercial Solar Energy,Solar ServiceEureka. we have arrived!… In April of 2018 we received a $46 check from BGE for the annual overage from solar. With the kids heading off to college soon and a new refrigerator around the corner, I’m confident our checks from BGE will be getting bigger for the near future. At least until we purchase an electric car…

Residential Solar Panels ,Solar Service
Written by Lisa Walsh

Question of the Day: Will the new Administration affect my Solar Incentives?

Should we be concerned about the new Republican Administration and the future of Solar Power?

Solar Energy, Residential Solar Panels ,Solar ServiceDue to its tremendous growth, popular appeal, and ever improving economics, solar power enjoys increasingly bi-partisan support on the Hill and in Governors offices around the country.  Due to this, we predict very little, if any, impact on solar growth from the current Administration and/or a Republican Congress.  To help explain this, let’s look at the three main drivers of successful solar economics for the typical solar consumer – Federal Tax Credit, SRECs, and cost of solar equipment:

Federal Tax Credit:  30% of system cost.  This has been an enormously successful tax incentive enabling wide scale deployment of solar on both a utility and distributed scale.  Economies of scale have helped to drive the cost of solar; while further increasing demand – allowing the solar industry to grow exponentially.  This has been applauded by both major political parties for the private capital investment opportunities and huge job growth in the solar sector.   In fact, the US solar industry currently employs more people than the US oil, gas, and coal industries combined.

The 30% solar investment tax credit (ITC) was extended by Congress (many of whom were Republican) in late 2015 and is designed to decline in future years to eventually fall back to a permanent 10%.  The ITC schedule from the December 2015 legislation is as follows:

2016 – 2019: The tax credit remains at 30 percent of the cost of the system. This means that in 2017, you can still get a major discounted price for your solar panel system.

2020: Owners of new residential and commercial solar can deduct 26 percent of the cost of the system from their taxes.

2021: Owners of new residential and commercial solar can deduct 22 percent of the cost of the system from their taxes.

2022 onwards: Owners of new commercial solar energy systems can deduct 10 percent of the cost of the system from their taxes. There is no federal credit for residential solar energy systems.

In a nutshell, most in the solar industry believe it would be political suicide for the majority of congressional representatives to vote for a repeal of this enormously successful Investment Tax Credit that is scheduled to decline anyway.  There are too many solar jobs and solar projects in Republican districts for the majority of Republicans to consider advocating for repeal.  The horse is out of the barn and solar is winning!

SRECs: Maryland and Washington DC offer Solar Renewable Energy Credits to solarized homes and businesses.  This is a State/District-mandated incentive that, if anything, shows signs of expanding among the 29 States that have currently adopted an RPS (Renewable Portfolio Standard).  This is largely due to the fact that State Houses wish to support the exponential renewable energy sector job growth amidst the scheduled, declining Federal Support.

Solar Technology Costs:  Advancing technology, manufacturing scale, high adoption rates, and investor confidence in solar technology continue to drive down solar project costs.  We don’t see this momentum changing anytime soon.

Written by Lisa Walsh

First Community Solar Project in Washington DC

PRESS RELEASE

For Immediate Release

Tuesday, January 10th 2017

 

Father/Daughter Team Up for DC’s First Community Solar Project

WASHINGTON DC:  January 10th, 2017.  DC Resident Rebecca Mann and her father Neal Mann are poised to be the FIRST two PEPCO customers to take advantage of Washington DC’s newly revised and adopted Community Renewable Energy Facilities of 2016 (CREF).  After a process lasting three years, the District has finally worked out all of the kinks that enable D.C. residents to benefit from solar, even if they can’t put panels on their own roof.  Community solar offers the benefit of solar to community members (subscribers) who can’t, or prefer not to, install solar panels on their homes. This also gives renters an option to purchase solar power.

For the flagship project, Rebecca Mann is unable to install a solar power system due to limited roof space and shading constraints.  Located one mile away – her father, Neal Mann, is currently having a 16.24kW grid-tied solar power system installed.  This will generate enough power to offset a good portion of both his own, as well as his subscribing daughter’s, PEPCO utility bill —  at full retail price.

The project is currently under construction and is poised to be interconnected and officially net-metered by the end of January 2017.

Solar Energy Services, Inc. is one of the region’s longest running solar installation companies.  Founder Roger Perry has been in the solar energy industry for over 35 years.  His partner, Rick Peters, is a current Board member and past President of MDV-SEIA.  Locally owned and operated, SES installs both residential and commercial solar PV (electric), as well as solar thermal (hot water) systems in Washington DC, Maryland and Virginia.

Useful Links

PEPCO’s Green Power Connection and CREF

History of Washington DC’s Community Solar

For further information, contact:

Lisa Walsh 

Solar Energy Services, Inc. 

410-923-6090 X304

443-253-6941 Direct

Lwalsh@solarsaves.net

Washington DC Solar, solar renewable Energy,
Written by Lisa Walsh

Washington DC Solar Owners and Selling Solar RECs Upfront

Solar Service ,Home Solar Panels

Before we dive into this conversation – let’s be clear that SRECs (Solar Renewable Energy Credits) can be the most confusing part of figuring out the economics of a solar project.  Let’s also be clear that – as with anything confusing, (as well as possibly boring) – the temptation is to remove the confusion as quickly as possible.   In the world of solar installation and selling SRECs this sometimes translates to simply selling up to 15yrs of SRECs all at once to a solar installation company, who then installs the system at a bargain price.  Buyer beware – the immediate gratification of selling all of your SRECs in one fell swoop could be misleading.   When it comes to How and When you get paid for your SRECs “…the Sooner the Better”  may not be a sound financial strategy.

That said…Let’s talk Solar Renewable Energy Credits in Washington DC.

Both Maryland and Washington DC, along with eight other states have enacted the Renewable Portfolio Standards which specify that a certain amount of the renewable energy generated within that state must come from solar.   Whether residential, commercial, or institutional, each time a solar system generates 1 Megawatt hour of energy – the solar system owner generates 1 SREC.  This SREC is then sold via aggregators to an  SREC market where it is bought by Power Companies to allow them to meet their share of the compliance obligation, or else pay a legislated fine (Alternative Compliance Payment, or ACP) for every SREC they are short.  Washington DC currently generates the highest SREC values in the country largely due to the fact that the District does not have the real estate to install large solar farms which can oversupply the market and drive down SREC prices.

How Much is an SREC worth?

The value of an SREC in a particular market is dynamic due to two primary factors

  1. by design, SRECs values are intended  to decline over time.  The legislated ACP which serves as a ceiling to the SREC price is usually scheduled to decline in future years. Among other factors, increased installations should lead to decreased system costs and less need for SRECs to help finance a solar system.
  2. The other reason for variations is due to market mechanisms.  Brokers buy and sell SRECs in order to help make a market for them.  When the market is undersupplied, SRECs trade high, at a price close to the penalty (ACP).  This is good for those selling SRECs.  If the market is oversupplied (like Maryland is currently), then SREC prices in that market will decline well below the penalty – not so good for those selling SRECs. Varying SREC payment options are intended to allow system owners to buy down their SREC price risk. The difference between an Upfront Payment option and a Brokerage Payment option (market price) can be many thousands of dollars to a solar system owner.  In an undersupplied market like DC, where there is very little price risk for SRECs, that upfront payment option leaves a lot of money on the table.

How many SRECs will my system generate?

The number of SRECs any given system will generate depends upon the output of your system.  For example, an optimized (as in good and sunny) 5.0 kW system in Washington DC would generate close to 6.0 SRECs/year.

How and When would I receive my SREC income?

SRECs are most commonly sold through an SREC aggregator/broker such as Washington DC-based SolSystems.  However, SRECs here in the District are so valuable – as well as stable – that solar panel contractors are also offering to buy your SRECs and simply deduct the upfront payment off the cost of your solar installation.  So THIS is the heart of this article:  Solar owners have 3 choices for how to get paid for their SRECs:

  1. Upfront Payment (all SRECs are forfeited for a 5yr or 15yr period)
  2. 3yr, 7yr or 10yr Annuity Contract (SREC prices Locked-in for a specific term)
  3. Brokerage (Current market price less broker commission).

Sticking with the aforementioned 5kW system example, the following table illustrates projected SREC values for the system, using current SREC prices (November 2016) offered by a competitive SREC aggregator).

System Size = 5kW                            SREC per Year = 6

So, reviewing the column above, this Washington DC Homeowner with a 5.0kW system has these financial options to choose from:

$$$$$:  Brokerage = $32,101.85 over 25yr life of systems (as warrantied)

$$$:  *Annuity =  $18,690 guaranteed then sign-up for another annuity or go Brokerage

$:  Upfront = $8025.60  SRECs cannot be sold again until 2032.

*Annuity is also available in 3 or 5 yr increments, as well as the 10yr

The Brokerage price is exponentially higher than the other prices, does that mean there’s a lot of risk?

Some risk – yes, because you’re not locked-in to a static price.   But remember – historically DC SREC pricing has remained stable (the geography does not accommodate  huge solar farms that can flood the DC SREC market).  You can receive an email monthly that allows you to check on current pricing AND should the price start to decline – you can, at any point in time, switch to an Annuity.  .

If I choose the 10yr Annuity Option and lock-in my SREC pricing, what happens at the end of that time period?

You simply choose another payment option being offered at the time of contract experation.  Maybe you’ll opt for brokerage – or another annuity, up to you.  Same with the Upfront Payment, after 15 years.

How do I receive my SREC income?

Via check from the SREC aggregator which most pay quarterly (except with the Upfront Payment option which would be one-time).   This generally starts around two months after your system has been interconnected by your Utility and the SREC contract set-up.   We do advise that the contractual SREC relationship be kept between a professional broker/aggregator and the solar system owner.  Third parties, such as the solar panel installation company, may find themselves in a conflict of interest.

If the solar system installer is not buying my SRECs, who sets up the contract?

Most reputable solar panel installation companies will coordinate the initial set-up of your SREC contract with an SREC aggregator, as they have immediate access to the documents required for the initial set-up (Passed Building Permit, Interconnection Approval etc.).  Many installers have one or two aggregators they’re used to dealing with – or you may choose your own.

Solar Service ,Home Solar Panels
Written by Lisa Walsh

DC Property Owners: Big Hot Water load = Big Solar Incentives

Commercial Solar Service, Annapolis MD

A growing number of building owners, developers and condo associations in the District of Columbia have come to realize that their building happens to be located in the most solar-friendly city in the USA .  Solar contractors, investors and financing vehicles are falling over each other to get solar panels on District roofs and start generating  the lucrative solar renewable energy credits (SRECs).   Whether via Direct Purchase, or $0 solar leases – SRECs are undoubtedly the reason for the solar season in DC (more to follow on those below).

However, before you sign on the dotted line and fill your roof with a 25-year solar PV (electric) system, as offered by 9 out of 10 solar professionals, make sure that you’re not losing the opportunity to vastly increase your return on investment with a Solar Thermal System.

Solar Water Heating Feasibility

The pre-qualification for a Solar Thermal System involves three questions:

  1. Does your building have a substantial, daily (365 day) hot water need? (i.e. apartment building/condos, restaurant, laundry, brewery, health center)
  2. Does your building have a centralized water heating system (as opposed to individual units throughout the building)?
  3. Can the building accommodate additional storage tanks?

If you answered YES to these three questions you really (really) should first consider a Solar Water Heating system either before – or at a minimum – in tandem with, a solar PV system.  (Shopper Beware – unless your solar contact has experience with solar thermal – which many do not – you’re going to have to be prepared to shop further).

What is Solar Water Heating (or Solar Thermal)?

Other than using the sun for energy generation, Solar Water Heating Systems operate entirely differently from their electron-shaking PV counterparts.  These time-tested, technologically mature systems are mechanical in nature and relatively simple.

Moreover, a solar thermal panel is 60 – 70% efficient; whereas a solar PV (electric) panel is typically 17 – 24% efficient.  Therefore, solar thermal panels generate substantially more energy per square foot than PV panels,  monetizing many more SRECs.

Solar Service , Home Solar Panels, Solar Renewable Energy

 

Let’s Review SRECs…

SRECs (Solar Renewable Energy Credits) – along with the 30% Federal Tax Credit and 100% Year 1 depreciation– are what drive the tremendous economic benefits of solar in Washington DC; one of several jurisdictions that have enacted a Renewable Portfolio Standard requiring that a specific percentage of electricity consumed must come from solar.   Whether residential, commercial, or institutional, each time a solar system generates 1 Megawatt hour of energy – the solar system owner generates 1 SREC.  This SREC is then sold via aggregators to an SREC market where it is bought by competitive energy suppliers to allow them to meet their share of the compliance obligation, or else pay a legislated fine (Alternative Compliance Payment, or ACP) for every SREC they are short.  Washington DC currently generates the highest SREC values in the country, largely due to the fact that DC does not have the real estate to install large solar farms which can rapidly oversupply a market and drive down SREC prices.

How much are SRECs Worth?

Washington DC SRECs are currently trading at $395/SREC.  To provide a frame of reference, a 6000 sq ft rooftop in Washington DC outfitted with a 75kW solar PV (electric) system could generate around 90 SRECs/year (over $35,000/year).   Depending on variables such as system size, corporate tax rate and and project site attributes, this SREC income – combined with a 30% Federal Tax Credit and 100% Year 1 depreciation, typically result in IRR’s between 30% – 60% and a Simple payback of 3 – 5 years.    Assuming solar thermal is applicable, this same roof outfitted with a Solar Thermal System could fit a kWh equivalent of a 150kW+ system, generating 180 SRECs/year – and see an IRR of 50 – 80%, with a simple payback in the 1 – 2 year range.

Solar Service ,Home Solar Panels, Residential Solar PanelsMaintenance

Although Solar PV (electric) clients often opt for an O & M (operations and maintenance) contract through their solar installer, Solar PV Systems  have relatively minor maintenance needs; usually an annual inspection along with ongoing monitoring.    Solar thermal (water heating) requires a little more maintenance including a 3 – 5 yearly service which, at a minimum, includes a replacement of the propylene glycol/energy transfer fluid that can degrade with time.  Nonetheless, the impact of service costs on the overall IRR is relatively small and easily absorbed by the increased SREC income.

1 2 3 6