Contact Us Today!

Solar Energy Services
1514 Jabez Run
Millersville, Maryland 21108

info@solarsaves.net

410.923.6090

Solar Power for Maryland Car Wash

A 5-year payback for 25+ years of electricity?
That’s a no-brainer!

The year 2020 is the last year that commercial building owners can qualify for the 26% Federal tax credit and other solar incentives that, together, combine to offer an excellent return on investment.  Economics that work, speak for themselves.  In that spirit, let’s have a real-time, real-design, real-numbers, deep-dive into the solar conversation between SES and a Maryland business owner looking to decrease their utility costs.

The Status Quoâ€Ķ

Business: Car Wash
Utility Bill: ~$4000/month
Roof Size: ~8000 square feet
Roof Type: Flat, standing seam metal
Business Type: S-Corp (for-profit entity eligible for tax credit)

The Solar Solutionâ€Ķ

Solar System: 212 panels / 81.62kW
Upfront Cost: ($172,200)
26% Federal Tax Credit: $44,902
MD State Grant: $12,043
Sale of SRECs: $54,000
Tax Depreciation Year 1: $42,070
25-Year Energy Savings: $346,954
Business Type: S-Corp (for-profit entity eligible for tax credit)

The Paybackâ€Ķ

The questions from this building owner followed much the same track as most solar prospects: 

#1 = Economics: Is this good for my bottom line?  

#2 = Building Preservation: What risks are there to my building and/or daily operations?

#3 = Construction Process: Why SES and how long will it take?

E C O N O M I C S

Do I pay the whole amount upfront or are any of the incentives deducted first?

You are responsible for the $172,200 upfront cost upon contract execution.  Over 60% of the incentives are realized in YEAR 1 (tax credit, state grant, depreciation).  The remaining incentives (ongoing sale of SRECs and energy savings) recur throughout the 25-year warrantied life of the system (and beyond!).

How do I know I’m eligible for the Federal Tax Credit and 100% Year 1 equipment depreciation?

A quick phone call to your tax advisor will answer this.  Most for-profit businesses that owe Federal taxes have plenty of tax appetite, even if they carry some of the earned credits into future tax years.  In this case that is a $44,902 tax CREDIT (as opposed to the less valuable “tax deduction”).   NOTE:  2020 is the last year for a 26% credit – in 2021 it drops down to 22% and then 10% in 2022, but projects started in 2020 can carry the 26% credit into future tax years. 

What are SRECs?

SRECs = Solar Renewable Energy Certificates.  Their goal is to encourage building owner’s like yourself to invest in solar.  As per the legislated Renewable Portfolio Standard, each time any grid-tied solar system in Maryland (residential or commercial) generates 1MWhr of energy – the system owner earns  a tradable credit that is sold on a competitive SREC market.  Currently, an SREC in Maryland is worth $77 (or, 77% of the ACP – Alternative Compliance Payment, currently $100).  The 88.62kW system SES as designed for this car wash is slated to generate ~102 SRECs annually allowing the system owner to receive payment quarterly via an SREC aggregator such as Sol Systems in Washington DC.

Who buys my SRECs?

Ultimately, SRECs are purchased by electricity suppliers who are mandated by the State of Maryland (and various States throughout the US who have adopted the Renewable Portfolio Standard) to deliver a specific % of their energy from renewable sources.  They can do this in one or more of three ways:

  1. Build their own renewable energy plants
  2. Pay a fine (Alternative Compliance Payment currently at $100 per MWh here in MD)
  3. Purchase SRECs from currently operating solar systems (currently $77 per MWh)

For many of these electricity suppliers, the most cost-effective path is to buy your SREC.  They do not buy your SREC directly from you – but through an SREC aggregator (broker).  SES’s preferred aggregator is Sol Systems – although we are happy to support you in contracting with the SREC broker of your choice (SES has no involvement in your SREC contract after the initial setup).

How do I apply for the Maryland State Grant?

SES takes care of the paperwork requiring only your signature.  Grants are usually received several months following the application.

Are there any loan products available?

PACE financing is an excellent vehicle for small/mid-sized commercial solar projects.  The solar asset is financed with private financing and is repaid through the property’s tax account (much like a sewer or road assessment).    Some of the many benefits include:  cash flow positive from day 1, loan is off-balance sheet, no personal guarantees, little or no out of pocket costs, and the solar system asset and any loan balance, simply transfers with sale of building.

D E S I G N

How does the solar energy work to reduce my utility bill?

Your solar system has 3 major components:  the solar panels, the panel racking , and your inverter(s) that are usually installed near your electric panel/utility meter.  Your solar panels will generate energy as the sun shines on them.  This energy (DC/Direct Current) flows to the inverter whose job it is to convert this incoming DC energy to AC (Alternating Current) which is fully accessible both by the utility grid as well as all of your building’s electrical infrastructure/appliances.  At any point in time the solar energy will be immediately offsetting your electricity consumption with any and all excess energy flowing to your BGE meter and essentially spinning it backwards, generating credits with the utility.  This function is known as Net-Metering and ensures you receive full credit for 100% of the solar generated by your system.  Any credits will be used up at nighttime or during winter/low sun.

I am concerned about the risk of leaks due to penetrations on my flat roof.  How do the solar panels attach?

The current design utilizes a no-penetration attachment technique commonly referred to as “ballasted.”  The solar panels are attached to racks, which are designed to incorporate a number of concrete block/bricks that – along with the weight of the solar panels and racking – ballast or weigh the system to down to the roof without us having to pierce holes and attach to the substructure.

If you have a pitched asphalt shingle roof or a metal roof, you can rest easy.  We have time-tested racking solutions for each.  These fully-engineered systems take into account the building structural loads as is required for permitting.

What informed the choice of solar panels for my design – are there other options?

We chose a REC 385 watt solar panel for your project for these reasons:

  1. Economics: These are highly cost-effective solar panels, without sacrificing quality. There are, for example 400 – 450 watt panels that are either currently or about-to-be available.  However, when I plugged in the numbers for these higher-wattage panels, the increase in cost decreased the overall Internal Rate of Return.  In a nutshell, those extra 15 or so watts per panel were not worth the cost increase, when considering the project strictly on economics.  That said, some buyers choose to maximize energy production and the lifetime savings, even if it modestly degrades the 25 year economics (Internal Rate of Return).
  2. Warranty: Because SES is a certified REC installer, this bumps the manufacturer’s workmanship warranty from 20 to 25 years.  So these panels come with a 25 year performance (typical) AND 25 year workmanship (atypical) warranty from the manufacturer.  Most other panels – including higher wattage – do not offer this type of warranty

That said, SES offers a wide range of solar panels to meet all budgets and design criteria.

How will I know my solar system is working every day?

Your system will come with robust 25-year online monitoring.  Each day you will be able to see both your current and historical solar output.

What warranties come with the system?

  • Solar Panels = 25 year performance and 25 year materials and labor
  • Inverter(s) = 12 years (extension to 25 years are available)
  • Optimizers = 25 years
  • Installer Workmanship = 2 years for all workmanship items

What kind of maintenance does the system need?

As Solar PV systems have no moving parts, there are very few and infrequent maintenance items.  Your monitoring system (referenced above) will alert you to any errors in the system’s operations (we also have access to the online portal).  Some solar system owners, especially out of town investors, may elect to contract with us for an annual Service agreement with 2 site visits per year and accompanying reports.  However, most of our small/mid-sized commercial building owners simply monitor the systems and contact us with any questions as needed.  SES does have a dedicated Service Department with hourly services available to both our own customers as well as solar systems installed by the many solar contractors who may have come and gone over the years.

C O N S T R U C T I O N

What are the permitting requirements and how long do they take?

We typically allow 12 to 16 weeks for the design, engineering and permitting phases of the project.  Both building and electrical permits are procured through the county or city jurisdiction, and an interconnection permit is required through your utility company.

How long is construction?

An 81.62kW project such as this one would likely take around 4 weeks for material installation.  Inspections and approvals require another 3 – 4 weeks post-installation before the system can be energized.

It is safe to say this is a minimum 6-month project from contract signing through fully operational.

Will there be any disruption to my daily operations?

80% of the construction process takes place on the roof, so there will be little to no disruption to the daily operations taking place in the car wash.  Wiring of the solar system will require access to the Main Service Panel in your electric room.  Any temporary disruption to the electric service will be arranged with you ahead of time and completed during an agreed-upon time.

Are there any time constraints regarding the current solar incentives applied to my system?

Yes.  In order to qualify for the 2020 Federal Tax Credit of 26%, you must have a signed contract in place with us AND we need to have spent 5% of the total contract amount (permits/engineering) in 2020.

Additionally, the Renewable Portfolio Standard (RPS, which is state legislation that determines the length and the amount of SREC values) is designed to decline as more solar is installed and the State meets its clean energy goals.  In a nutshell, the sooner the system is energized, the sooner you can realize the near-term, highest SREC values.

[/vc_column_text][/vc_column][/vc_row]

Developer’s Success Story – A Solar Integrated Green Roof in NE DC

By Lisa Walsh | Commercial Solar Developer | Solar Energy Services, Inc.

For the newly-finished Taylor Street Storage facility in North East DC, a 17,500 square foot green roof with fully integrated solar panel array that showcase a value-stacked, elegant design providing both a cost-effective solution to storm-water management. All without forfeiting the solar panels that generate income via federal tax incentives and DC’s superb solar production-based financial incentives.


With over three million square feet of green roofs in Washington DC and 50MW+ of solar installations – the City is no stranger to either technology. However, the integration of both on the same roof is less common, despite the symbiotic relationship between the two offering a number of advantages.


Beds of Sedums awaiting Fall planting at Taylor Street Storage, Oct 2018.
Photo Credit – David Gorman of Lock 7 Development

Completed 133.980kW Solar-Integrated Green Roof at Taylor St NE WDC
Photo Credit – David Gorman of Lock 7 Development

Storm-water Management


Approval for a commercial building permit in Washington DC must include a storm-water management plan as defined by DC’s Department of Energy and the Environment (DOEE). For Taylor St, the Development team could have chosen between:

  1. Lost parking spaces to house costly underground containers for capturing and storing runoff
  2. Payment of ever-increasing storm-water management fees
  3. Implementation of a multi-layered Green Roof to treat 100% of the rainfall obligation with a perennial, sedum based plant surface – as per DOEE requirements.
    The green roof offered a cost-effective storm-water management solution that required no additions or demo’s to the existing structure.
    Solar Panels

Solar Panels

Most savvy developers realize that an empty roof in Washington DC is money left on the table. With the best solar financial incentives in the USA, the payback is rapid followed by years of production-based paydays. Small wonder that the development team at Taylor Street were interested if – and how – a solar array could integrate with a Green Roof. The good news is not only does the solar system seamlessly integrate with the green roof but the relationship is one of symbiosis and cost-effectiveness. Here’s why:

BALLAST. Most solar systems installed on DC’s commercial flat roof areas are ballasted. i.e. an assortment of concrete blocks, along with the weight of the solar panels and racking, is engineered to hold down the weight of the array with minimal or no penetrations to the roof membrane.
With close to 35 PSF of weight, a green roof more-than provides this ballast negating the need for concrete blocks or supplemental attachments. This is worth mentioning as the Green Roof is now a fully engineered component of the solar system bringing the question of tax credit eligibility into play. Is the Green Roof, or portion of, now eligible for the 30% Federal Tax Credit? Certainly worth conferring with a tax adviser.

A close up of the Solar System mounted into the soil on the roof.

CREATION OF A MICRO-CLIMATE: Furbish designs their perennially healthy green roofs with a wide palette of sedum species. These drought-resistant succulants require little maintenance and have varying requirements for daily sunlight – from full-sun to all-shade. Contrary to first impressions the intermittent shading and weather protection provided by the solar panels provide a micro-climate highly conducive to the plants underneath, in between and around the solar arrays.

DESIGN: Most ballasted solar systems have ample aisles between each row of solar panels insuring that each solar panel is optimized and avoiding shading from the panel row in front. Solar panels can also be tilted anywhere between 5 and 35 degrees. This is adjusted to account for shading, panel count and orientation considerations. This flexibility of design was helpful for integration the green roof. Aisle spacing, solar panel size and tilt were designed with the Green roof in mind – not only as it relates to healthy plants, but also for annual maintenance access requirements.

Established Example featuring similar product and design as Taylor Street


CHALLENGES: Solar-integrated green roofs are not as common as their singular counterparts. Fair to say this project did not come without some challenges


DOEE DESIGN STANDARDS: Department of Energy and Environment is responsible for DC’s Stormwater Management and insuring all DC buildings comply with runoff standards. The burden was on SES and Furbish to ensure that the solar arrays were not going to impede the ability of the plants to thrive and provide the necessary water retention requirements. The design and permitting side of the project insofar as panel tilt, aisle spacing and racking integration were designed in collaboration with DOEE.


INSTALLATION TIMELINES: Furbish Company are Green Roof specialist, Solar Energy Services, Inc. are solar specialists. Integrating these technologies took heightened coordination between our installation teams, mostly in terms of labor efficiency, communication and timeliness. The latter was particularly stringent as the Certificate of Occupancy, required to meet the developer’s lease requirements, was contingent upon the completion of the Green Roof which now included solar racking, wiring and panel installations. Throw in some PEPCO Permission to Install challenges related to the solar portion, and the pressure was on.


The project came with some unusual PEPCO interconnection timing challenges at the end. Ironically not related to the Green Roof aspect of the application. Nonetheless, this system is now outputting electricity like gangbusters. All’s well that’s ends well.

Solar Systems with Integrated Electric Vehicle Chargers

[vc_row][vc_column][vc_column_text]

â€Ķ.like Peas and Carrots

Solar Panel, Solar energy, Annapolis MDAs referenced in our accompanying EV Growth Blogs, the adoption of Electric Vehicles has skyrocketed in recent years. This is small wonder considering EV purchasers can look forward to a 30% federal tax credit on the upfront cost, reduction of fuel costs of at least 60% (according to this Nissan Leaf owner’s calculations), and State Grants/tax credits where applicable (Maryland, for example) and the negation of various oil changes and maintenance costs that accompany an internal combustion engine. For homeowners who have discovered the substantial energy savings by purchasing (not leasing!) a solar residential system, it’s a natural step to want to extend these savings to their current, or future, electrified vehicle.

Ahead of the curve on this natural progression is an innovative new product from inverter manufacturer SolarEdge. All solar systems have two major components 1. Solar panel arrays 2. Inverter(s) that convert incoming DC energy to appliance-ready AC energy. As the national leader in residential inverter supply, SolarEdge made a great move in developing an Inverter that has a built-in EV Charger with a 25’ charge connector. Net energy meter customers (NEM) or energy generating customers interconnected to Pepco are not eligible to apply for the R-PIV rate.

Electric Charging,Solar, Annapolis MD

Why not choose a separate EV Charger?

Four reasons:

  1. Cost. Upgrading to an inverter that has a built-in EV Car Charger comes at around a $1000 cost increase (assuming one inverter/car charger). However, this upgrade – as part of the solar installation – qualifies for the 30% federal tax credit, putting the material cost at around the same as a separate stand-alone EV Charger such as Clipper City. In addition, the integrated inverter has no additional labor or electrician charges – its all covered in the solar install.
  2. Warranty. Popular stand-alone Car Chargers such as Clipper City come with a 3- year warranty. Solar Edge’s integrated inverter has a 12-year warranty, with upgrades up to 25 years available.
  3. Design Elegance. Between service panels, routers, generators and other wall-mounted electronics – its nice to have a 2-in-1 solution and save some wall space. No additional wiring or conduits needed. Of course, the inverter does need to be placed within 25’ of where the EV will be parked nightly.
  4. All Pros no Cons. As with Stand-alone chargers, Solar Edge’s integrated solution allows for indoor/outdoor placement, comes with a 25’ connector and offers software that tracks your EV’s energy consumption that is accessible from desktop or phone, and can be controlled remotely.

Thinking Ahead

Due to the clear advantages, and seeming inevitability of rapid EV adoption by the majority of Americans by the Year 2030, we now ask all of our prospective solar shoppers two questions:

  1. “Do you plan to buy an Electric Vehicle in the not-so-distant future?”
  2. If so, “ What is your expected weekly/annual mileage?”

Mileage calculations inform how many solar panels we should add to the array in order to cover as much EV car use as possible (as roof space allows). Worth noting for our Washington DC/Montgomery County solar customers, PEPCO does require us to fill out an Electrical Usage Calculation Sheet if the solar system is sized over 120% larger than the past 12 months usage history. In those cases we simply submit the estimated kWh increase (as per expected mileage calculations) that the EV will add.

[/vc_column_text][/vc_column][/vc_row]

PEPCO Incentives for Electric Vehicle Owners in Maryland and DC

[vc_row][vc_column][vc_column_text]

PEPCO has an Electric Vehicle (EV) Program for residential customers in Maryland. It is open to all qualified residents throughout the state. You can participate in the program if your electric vehicle is registered in Maryland.

This program was created to encourage off-peak vehicle charging. The benefits include lower off-peak electric rates for charging during the 16 hours of off-peak hours available Monday through Friday and all day Saturday and Sunday. This policy lightens the load and strain on the electric grid which improves the reliability for everyone. It also encourage the shift to clean energy which will reduce car emissions. And if you choose to charge your car with solar panels, you will achieve an even greater impact.

Another way you can make a difference is by shifting your energy usage to night time. Run your big appliances at night. Wash and dry your clothes at night. Run your dishwasher at night. Again, this will lower the burden on our power plants and it will also lower your electric bill too.

In DC, PEPCO is proposing special incentives to owner’s of electric vehicles. The program will offer lower electric rates to owners of EVs that charge their cars during off-peak hours. Some customers will also qualify for discounts on Level 2 smart charging stations that includes 100% of the cost of installation. For commercial property owners, PEPCO will install charging stations at a discount and they will also install them for free. PEPCO is also planning to install 20 fast charging stations along the main roads and in each Ward and in each quadrant of the city. Finally, PEPCO will be creating a $1,000,000 fund that is designed to provide grants for people and organizations with ideas that can help encourage a greater shift towards electric cars.

Let’s also help PEPCO increase electrification by considering a shift towards renewable sources from solar panels. Please contact us via this website or call us at (410) 923-6090. We have hundreds of installations throughout the Baltimore/Washington/Annapolis area. We look forward to helping you too.

[/vc_column_text][/vc_column][/vc_row]

Incentives for Electric and Hybrid Cars in DC

[vc_row][vc_column][vc_column_text]

Washington DC’s government is encouraging the ownership of electric and hybrid cars with incentives that will save you time and money. For one, if you own an electric vehicle, you are exempt from emissions testing. If your car emits nothing, there is nothing to test. You simply need to register it with the DMV in DC. And if your car is a hybrid that is both electric and gas powered, you only need to pass a smog test. For questions about this, you can call the DC Department of Motor Vehicles at (202) 737-4404.

Fuel Efficient Cars get Reduced Registration Fees

You can also qualify for a discount on the first-time vehicle registration for a qualifying electric, hybrid or clean fuel vehicle. Their rules state that your car must get at least 40 miles per gallon in city driving. Check www.fueleconomy.gov to see how your car rates. You also must be the original owner of the car. If your car is used, you are eligible for the excise tax exemption. This exemption is the tax you pay upon purchase of a vehicle. So, the exemption can be a nice savings for you.

You might also qualify for federal tax credits. Eligible cars include electric, hybrid, plug-in hybrids, diesels and alternative fuel vehicles. Ask your accountant about how this might benefit you. And another benefit is that your insurance company might offer a discount. If they don’t, you might want to call around to find a carrier that does. These savings can really add up.

And finally, if your business has a fleet of 10 or more clean fuel automobiles, you can qualify for an exemption to the HOV lane. Again, call the DC DMV at (202) 737-4404 to find out about this benefit. Going electric and fuel efficient will put you in the fast lane in so many ways.

And, of course, we are always available to help you power your electric car with solar panels at your home, in your community or at your business. Please contact us if you have questions about generating most, or all, of your energy from solar.

[/vc_column_text][/vc_column][/vc_row]

Solar on Slate Roofs in Washington DC

Residential Solar Panels, Solar InstallerWith Washington DC offering homeowners the best solar incentives in the country – its small wonder that solar panels are going up like hotcakes. In order to meet the demand, most solar installers are adept at designing and efficiently installing solar panel systems on most roof types in DC: namely flat roofs and asphalt shingle. However, homeowners with a traditional slate roof will need to shop around for a qualified, slate-savvy installer.

Slate Roof Challenge

Washington DC Solar,Solar ServiceIn this order, the most common types of residential rooftops in Washington DC are flat, asphalt shingle and slate. Asphalt shingle are generally the simplest type of roof to attach to. They are flexible, soft and flashing/sealing all of the attachments has been fine-tuned to near perfection by the solar industry. Flat roofs are generally installed using no/few penetrations either with parapet-to-parapet rails or ballast-weighted systems. Slate, however, is among the most challenging roof type to work on for the following reasons:

  1. Expertise Tools and Labor Required

    Solar Service, Home Solar PanelsTraining a work crew adept at installing solar on a slate roof takes a significant investment of time, tools and techniques. As slate is a type of stone material – specialized diamond-tipped drills and copper replacement nails are required to penetrate and reattach the slate; drill too fast – and you’re likely to break the slate. Even with the most cautious of installers, a number of slates are still likely to end up broken and spares need to be kept on hand. Ideally – artificial slate can be used for replacing broken slates. Specialized flashings designed for use with the larger slate tiles must be used to seal around the attachment.

  2. Additional Labor

    Due to the fact that slate is essentially a smooth, slippery thin stone – this can be particularly challenging for installers to navigate. Couple this with a steep pitch, and extended hours on the roof due to time-consuming drilling techniques, labor estimates can easily double or triple when compared to an asphalt shingle roof; not to mention a particularly challenging and long day(s) for the installation crew.

The above two points ultimately result in increased costs for the customer. Fortunately, for DC residents with slate roofs, the financial incentives are such that paybacks are still generally under (or around) the 5 year mark – with many years of clear income to follow. Furthermore, as slate roofs can last 100 years or more, the roof and solar combination is set for a minimum 25 year relationship – and likely a good decade beyond that.

DC Property Owners: Big Hot Water load = Big Solar Incentives

[vc_row][vc_column][vc_column_text]Commercial Solar Service, Annapolis MD

A growing number of building owners, developers and condo associations in the District of Columbia have come to realize that their building happens to be located in the most solar-friendly city in the USA .  Solar contractors, investors and financing vehicles are falling over each other to get solar panels on District roofs and start generating  the lucrative solar renewable energy credits (SRECs).   Whether via Direct Purchase, or $0 solar leases – SRECs are undoubtedly the reason for the solar season in DC (more to follow on those below).

However, before you sign on the dotted line and fill your roof with a 25-year solar PV (electric) system, as offered by 9 out of 10 solar professionals, make sure that you’re not losing the opportunity to vastly increase your return on investment with a Solar Thermal System.

Solar Water Heating Feasibility

The pre-qualification for a Solar Thermal System involves three questions:

  1. Does your building have a substantial, daily (365 day) hot water need? (i.e. apartment building/condos, restaurant, laundry, brewery, health center)
  2. Does your building have a centralized water heating system (as opposed to individual units throughout the building)?
  3. Can the building accommodate additional storage tanks?

If you answered YES to these three questions you really (really) should first consider a Solar Water Heating system either before – or at a minimum – in tandem with, a solar PV system.  (Shopper Beware – unless your solar contact has experience with solar thermal – which many do not – you’re going to have to be prepared to shop further).

What is Solar Water Heating (or Solar Thermal)?

Other than using the sun for energy generation, Solar Water Heating Systems operate entirely differently from their electron-shaking PV counterparts.  These time-tested, technologically mature systems are mechanical in nature and relatively simple.

Moreover, a solar thermal panel is 60 – 70% efficient; whereas a solar PV (electric) panel is typically 17 – 24% efficient.  Therefore, solar thermal panels generate substantially more energy per square foot than PV panels,  monetizing many more SRECs.

Solar Service , Home Solar Panels, Solar Renewable Energy

 

Let’s Review SRECsâ€Ķ

SRECs (Solar Renewable Energy Credits) – along with the 30% Federal Tax Credit and 100% Year 1 depreciation– are what drive the tremendous economic benefits of solar in Washington DC; one of several jurisdictions that have enacted a Renewable Portfolio Standard requiring that a specific percentage of electricity consumed must come from solar.   Whether residential, commercial, or institutional, each time a solar system generates 1 Megawatt hour of energy – the solar system owner generates 1 SREC.  This SREC is then sold via aggregators to an SREC market where it is bought by competitive energy suppliers to allow them to meet their share of the compliance obligation, or else pay a legislated fine (Alternative Compliance Payment, or ACP) for every SREC they are short.  Washington DC currently generates the highest SREC values in the country, largely due to the fact that DC does not have the real estate to install large solar farms which can rapidly oversupply a market and drive down SREC prices.

How much are SRECs Worth?

Washington DC SRECs are currently trading at $395/SREC.  To provide a frame of reference, a 6000 sq ft rooftop in Washington DC outfitted with a 75kW solar PV (electric) system could generate around 90 SRECs/year (over $35,000/year).   Depending on variables such as system size, corporate tax rate and and project site attributes, this SREC income – combined with a 30% Federal Tax Credit and 100% Year 1 depreciation, typically result in IRR’s between 30% – 60% and a Simple payback of 3 – 5 years.    Assuming solar thermal is applicable, this same roof outfitted with a Solar Thermal System could fit a kWh equivalent of a 150kW+ system, generating 180 SRECs/year – and see an IRR of 50 – 80%, with a simple payback in the 1 – 2 year range.

Solar Service ,Home Solar Panels, Residential Solar PanelsMaintenance

Although Solar PV (electric) clients often opt for an O & M (operations and maintenance) contract through their solar installer, Solar PV Systems  have relatively minor maintenance needs; usually an annual inspection along with ongoing monitoring.    Solar thermal (water heating) requires a little more maintenance including a 3 – 5 yearly service which, at a minimum, includes a replacement of the propylene glycol/energy transfer fluid that can degrade with time.  Nonetheless, the impact of service costs on the overall IRR is relatively small and easily absorbed by the increased SREC income.[/vc_column_text][/vc_column][/vc_row]

A Primer on Solar Power

[vc_row][vc_column][vc_column_text]Did you know that attempts to harness the sun’s power through the development of solar cells dates back to the late 1800’s? I am sure that this, and other information, may be new to our readers. This article will provide you with some basic facts about solar power and solar energy. That way, you can join the conversation, and the renewable energy movement!

  • The first successful solar cell was developed in the early 1950s. It was made of silicon, and able to power small electronic devices. This was hailed as the beginning of a new era of energy resources, even then being acknowledged as having the potential to offer a limitless supply of electricity.
  • The first true application of solar cells could be found in the space program at NASA and in Russia. They were the only ones who could afford this technology in the 1960s.
  • The cost of solar cells continued to decline incrementally, but not so significantly that solar was a common source of energy through the 1970s. But, as the 1980s dawned, and ever since, solar power has insinuated itself into all aspects of life, commercially and residentially.
  • The first solar panels for buildings were developed in the early 1970s. In truth, this initial foray into the potential for large scale residential solar power was actually a solar array built into a rooftop. Panel development followed, as the cost and manufacturing efficiency increased.
  • President Jimmy Carter had solar panels placed on the roof of the White House in 1979. Everyone was getting into the act!
  • Welcome to 2018. Today it is common to find solar-powered cars, solar-powered telecommunications, and even solar-powered aircraft. One car company, renowned for their progressiveness, has incorporated solar panels into the roofs of their vehicles!

But, there’s more! Technology continues to expand the horizons of solar energy, making it affordable and applicable in new ways and new places. For example, it is possible that eventually solar panels on rooftops will be replaced with solar shingles!

Or, consider this, a solar fabric is being finalized that can be attached to houses as a cooling device!

We here at Solar Energy Services are excited about the future applications of this renewable source of energy for personal and commercial uses. You can count on us to utilize our superior knowledge and expertise to your advantage. We look forward to serving you!

[/vc_column_text][/vc_column][/vc_row]

The Fairytale of the 25 year Solar Workmanship Warranty

[vc_row][vc_column][vc_column_text]

Commercial Solar Service,Solar ServiceIf you’re like most solar shoppers, you prefer two or three bids on a substantial home improvement project; enabling you to sanity-check pricing, design options and find the overall best contractor-fit.  Included in these proposal comparisons is the Warranty. Most solar systems come with 3 warranties:

  1. Solar module manufacturer’s warranty; usually 25 – 30 years,
  2. Inverter(s) manufacturer’s warranty; usually 10 – 25 years (inverters convert DC energy to home-accessible AC energy)
  3. Workmanship warranty – entirely separate from 1 & 2 above. This insures the design and installation, insofar as contractor/labor portion of your install is covered for a given period of time, as determined by the installation company.

Industry Standard

As the popularity of solar has increased – so has the number of competing contractors and their accompanying solar proposals. All of these proposals should include a workmanship warranty. What will differ is the duration of the workmanship warranty. The standard duration for a residential solar system was always 5 – 10 years until a couple of years ago when some contractors started offering an unprecedented 25-year workmanship warranty. This is a good thing, right? On paperâ€Ķsure.

Compete only to Beat

With over 35 years in the solar industry, it’s fair to say we’ve seen a lot of solar installers come and go; especially in the last five years. The go-ing usually brings with it a slew of phone calls to our service department as solar system owners panic about no longer having their contractor around to honor the workmanship warranty; particularly those looking to resolve existing issues. Ironically, these are sometimes homeowners that chose the contractor over us due to a workmanship warranty of shorter duration. We have stuck with the industry-standard of 10 years, whereas some other installers have increased to 25 years to match the manufacturer warranties.

So, the big question – and the reason for this current article is – Why? If some of our competitors are offering a 25-year warranty – why don’t we? Seems only natural, given the fact that we’ve been in business for longer than 99% of them – greatly increasing the probability that we’ll be around to honor an extended workmanship warranty.

The Big Answer (in two parts)

  1. We’re keeping it Real: Understandably, a 25-year workmanship warranty is attractive to a homeowner because – by design – it matches the 25-year solar panel warranty. This does not change the fact that a workmanship warranty exists entirely independent of the installed equipment warranty(s). A contractor’s history, fiscal health and future plans have little or nothing to do with the equipment warranties. Given this, we avoid inflating the language in our contracts to provide misleading comfort to a home or business owner, with the sole purpose of beating out the competition at contract-signing time.
  1. We’re still keeping it Real: Of all the orphaned solar projects we’ve come across – we cannot cite a single known instance where a homeowner has taken legal action over an abandoned workmanship warranty item; simply not worth the court fees or the hassle. Most exert their energy on finding a contractor who will fix the problem as soon as possible and get their solar system restored to full working condition. Hence, the true value of the workmanship warranty is contractor integrity and the likelihood of whether they both intend to and will remain in business to honor their contractual agreement. For most solar contractors, the standard ten-year commitment reflects a realistic forecast of longevity and commitment; avoiding the temptation to head off into fairytale land in order to beat-out the competition.

[/vc_column_text][/vc_column][/vc_row]

Diagnosing and Preventing Critter Damage to Solar Panel Arrays

[vc_row][vc_column][vc_column_text]

Solar Service ,Home Solar Panels It’s no secret that hundreds of thousands of homes have installed roof mounted solar panels, with that number increasing with each passing day. The upward trend brings increasing problems that arise when tech meets nature. In an acorn shell we’re talking critters who nest, feed, chew and live their critter lives in and around solar panel installations.

Which Critters?

Any animal that can fit under your array poses a risk to a solar installation. Pigeons and other birds looking for a warm/safe place to build nests may do so under a solar array. This doesn’t usually cause any malfunction to the system. However, water build-up and bird waste may cause minor roof damage and may be more of a nuisance than anything.

Squirrels, mice and rats, on the other hand, can wreak havoc on a solar system. These members of the rodent-family have teeth that require filing down throughout the course of their lifetime. The wires, plastic connectors and small parts that run underneath the panels can be excellent teeth-filing equipment. We have seen squirrels chew the outer plastic covering of wires, as well as penetrate junction boxes on the back of panels and chew into the solar panel interiors. This type of damage will cause panels and even whole systems to cease power production.

Solar Service, Home Solar Panels ,Washington DC SolarWho’s at Risk?

Any solar system can be susceptible to critter damage. However, those most at risk are usually systems that are in wooded areas; particularly where tree branches extend close to the rooftops, allowing easy access for squirrels to make the jump from branch to solar system array. Although many homes and businesses fit this description, it’s also worth mentioning that for every critter complaint we’ve had – there are 20 or 30 more systems that have had NO issues with critters. However, it’s also worth mentioning that most of our customers are no more than 10 years into a 25 – 40-year solar system lifespan. Time will tell what the probability of critter-damage risk over a system’s lifetime will end up being.

Detecting and Diagnosing the Damage

Most solar system owners first become aware of a problem when their solar system does not seem to be producing as well as it used to. For homeowners with online monitoring, they may see that a string of panels – or individual panels (in the case of those systems outfitted with a microinverters or optimizers) are no longer registering power output. Others may hear scampering around on their roofs and may notice their utility bills creeping up. That’s when they call our service department. Our technicians need to remove and inspect each panel, as well as their connecting cables, suspected of damage. In most cases, we can remediate the wire damage onsite without engaging the solar panel manufacturer for a replacement panel. Whether this takes removal of every solar panel, or just a few – depends on the extent of the damage or ability to detect the extent of the damage.

Home Solar Panels,Solar Service, InstallationInstalling Critter Guard

There are a variety of anti-small-animal solutions out there for solar systems designed to create a barrier around the perimeter of the solar system. We usually choose the one most compatible with your solar system; depending on the type of racking initially installed. Most critter guards are made of some type of strong steel-mesh screen and they do not require drilling into the roof.

One of our more popular systems, the aptly named “Critter Guard” employs clips that attach to the bottom flange of the module frame and have hooks to snap the screen into place. The clips are painted steel and can be snapped to the appropriate length to accommodate height variations so there are no small spaces that accommodate a small animal. The mesh screen is vinyl-coated steel, rigid enough to keep out even the most industrious squirrel.

Residential Solar Panels ,Solar ServiceCritter Guard is now a standard option that we offer to our customers and we strongly encourage it when the structure has trees that are encroaching on the rooftop. While the tree branches may not be close enough today to make contact with the roof, over time, if not maintained, they can grow out to become that ideal path to an appealing new nesting site.

What are the costs involved?

The costs are always less if you can prevent the problem in the first place. Adding Critter Guard at the time of installation typically costs from $500 – $2000 depending on the size of your system; but of course this cost is integral to the solar system so most tax advisors would agree that the 30% tax credit would apply.

The costs for any rodent damage remediation will depend on the extent of the damage. Critter damage is not related to defects in installation covered under our standard Workmanship Warranty; neither will most solar panel/inverter manufacturers consider this damage a Material defect. Our service department charges Hourly-Time + Materials. These costs may range anywhere from $500 to $4000 for a mid-sized solar system including all remediation and installation of Critter guard to prevent further damage. We recommend inquiring with your home’s insurance agent to see if the costs can be covered under your homeowner’s insurance policy.

[/vc_column_text][/vc_column][/vc_row]

We're Hiring! Come Work With Team SES!Apply Now!