Written by Lisa Walsh

Developer’s Success Story – A Solar Integrated Green Roof in NE DC

By Lisa Walsh | Commercial Solar Developer | Solar Energy Services, Inc.

For the newly-finished Taylor Street Storage facility in North East DC, a 17,500 square foot green roof with fully integrated solar panel array that showcase a value-stacked, elegant design providing both a cost-effective solution to storm-water management. All without forfeiting the solar panels that generate income via federal tax incentives and DC’s superb solar production-based financial incentives.


With over three million square feet of green roofs in Washington DC and 50MW+ of solar installations – the City is no stranger to either technology. However, the integration of both on the same roof is less common, despite the symbiotic relationship between the two offering a number of advantages.


Beds of Sedums awaiting Fall planting at Taylor Street Storage, Oct 2018.
Photo Credit – David Gorman of Lock 7 Development

Completed 133.980kW Solar-Integrated Green Roof at Taylor St NE WDC
Photo Credit – David Gorman of Lock 7 Development

Storm-water Management


Approval for a commercial building permit in Washington DC must include a storm-water management plan as defined by DC’s Department of Energy and the Environment (DOEE). For Taylor St, the Development team could have chosen between:

  1. Lost parking spaces to house costly underground containers for capturing and storing runoff
  2. Payment of ever-increasing storm-water management fees
  3. Implementation of a multi-layered Green Roof to treat 100% of the rainfall obligation with a perennial, sedum based plant surface – as per DOEE requirements.
    The green roof offered a cost-effective storm-water management solution that required no additions or demo’s to the existing structure.
    Solar Panels

Solar Panels

Most savvy developers realize that an empty roof in Washington DC is money left on the table. With the best solar financial incentives in the USA, the payback is rapid followed by years of production-based paydays. Small wonder that the development team at Taylor Street were interested if – and how – a solar array could integrate with a Green Roof. The good news is not only does the solar system seamlessly integrate with the green roof but the relationship is one of symbiosis and cost-effectiveness. Here’s why:

BALLAST. Most solar systems installed on DC’s commercial flat roof areas are ballasted. i.e. an assortment of concrete blocks, along with the weight of the solar panels and racking, is engineered to hold down the weight of the array with minimal or no penetrations to the roof membrane.
With close to 35 PSF of weight, a green roof more-than provides this ballast negating the need for concrete blocks or supplemental attachments. This is worth mentioning as the Green Roof is now a fully engineered component of the solar system bringing the question of tax credit eligibility into play. Is the Green Roof, or portion of, now eligible for the 30% Federal Tax Credit? Certainly worth conferring with a tax adviser.

A close up of the Solar System mounted into the soil on the roof.

CREATION OF A MICRO-CLIMATE: Furbish designs their perennially healthy green roofs with a wide palette of sedum species. These drought-resistant succulants require little maintenance and have varying requirements for daily sunlight – from full-sun to all-shade. Contrary to first impressions the intermittent shading and weather protection provided by the solar panels provide a micro-climate highly conducive to the plants underneath, in between and around the solar arrays.

DESIGN: Most ballasted solar systems have ample aisles between each row of solar panels insuring that each solar panel is optimized and avoiding shading from the panel row in front. Solar panels can also be tilted anywhere between 5 and 35 degrees. This is adjusted to account for shading, panel count and orientation considerations. This flexibility of design was helpful for integration the green roof. Aisle spacing, solar panel size and tilt were designed with the Green roof in mind – not only as it relates to healthy plants, but also for annual maintenance access requirements.

Established Example featuring similar product and design as Taylor Street


CHALLENGES: Solar-integrated green roofs are not as common as their singular counterparts. Fair to say this project did not come without some challenges


DOEE DESIGN STANDARDS: Department of Energy and Environment is responsible for DC’s Stormwater Management and insuring all DC buildings comply with runoff standards. The burden was on SES and Furbish to ensure that the solar arrays were not going to impede the ability of the plants to thrive and provide the necessary water retention requirements. The design and permitting side of the project insofar as panel tilt, aisle spacing and racking integration were designed in collaboration with DOEE.


INSTALLATION TIMELINES: Furbish Company are Green Roof specialist, Solar Energy Services, Inc. are solar specialists. Integrating these technologies took heightened coordination between our installation teams, mostly in terms of labor efficiency, communication and timeliness. The latter was particularly stringent as the Certificate of Occupancy, required to meet the developer’s lease requirements, was contingent upon the completion of the Green Roof which now included solar racking, wiring and panel installations. Throw in some PEPCO Permission to Install challenges related to the solar portion, and the pressure was on.


The project came with some unusual PEPCO interconnection timing challenges at the end. Ironically not related to the Green Roof aspect of the application. Nonetheless, this system is now outputting electricity like gangbusters. All’s well that’s ends well.

Written by Rick Peters

Maryland Solar – Ready to Grow Again

For many years, Maryland has been a leader in solar policy and solar deployment.  In the last 3 years, we’ve fallen behind other states, watching our robust growth give way to several years of decline.  It’s almost hard to believe, but Maryland has been losing solar jobs for more than two years after peaking at approximately 5300 in late 2016.

Policy Clouds

Why is this happening?  One of the biggest reasons is the value of the state solar production incentive, the SREC (Solar Renewable Energy Certificate).  Those of you who own solar or have considered buying solar are probably all too familiar with SREC pricing.  Because Maryland property owners adopted so much solar in the first half of the decade, we outpaced the state’s goals, depressing the value of the market-based SREC incentive.  This was a good problem for the industry to have until it became clear that our goal (25% renewables by 2025 with 2.5% solar by 2022) was clearly not aggressive enough.

The Time is Now

We are now at a time of severe urgency for the Maryland solar industry.  With installations on the decline for over two years and job losses mounting, we are losing a trained employment base and leaving federal tax benefits on the table.   The solar industry has been working with other coalition members (wind industry, environmental organizations, etc.) for a few years to try to increase the state’s Renewable Portfolio Standard (RPS), but have been hampered by the Hogan Administration’s reluctance to incentivize more renewables until the completed RPS Study Report is released.  The study was due to be released in December of 2018, but has been delayed and some fear this is intended to stall an RPS increase for another year.  We cannot wait.

Governor Hogan has gone on record with his desire to fight climate change.  He recently coauthored an OpEd in the Washington Post with Virginia’s Democratic Governor, Ralph Northam to emphasize the urgency and the need for bipartisan solutions to climate change.  It is in this bipartisan spirit that we hope to see the Hogan Administration support the Maryland General Assembly in passing the Clean Energy Jobs Act
(CEJA)(SB0516, HB1158) of 2019 that will increase our renewable energy goal to 50% and the solar portion to 14.7 %. “Click here to read more about this

No-Brainer Investment for Maryland

One of the primary arguments against increasing the RPS has to do with the impact on utility ratepayers.  The preliminary indication is that the increased renewable goals associated with the CEJA will add approximately $1.85/mo. to the average electricity bill.  While this is not insignificant, it is important to note that a 2018 Daymark study, commissioned by the Hogan Administration’s Public Service Commission, found that for every $1.00 of investment in solar, we return approximately $5.00 in economic and health benefits to the state.   Solar jobs are good jobs that pay well, representing a path to economic stability for many installers.  And best of all, solar installation jobs cannot be exported.

We need YOUR help

As a solar advocate, we ask that you commit to express your support for CEJA in the Maryland legislative session this year.  The bill has been submitted and we should have a bill number shortly.  In the meantime, please continue to advocate for more solar whenever you can and be prepared to contact your Maryland state legislators to support this important legislation when the time comes.  Stay tuned for a special email notification with the bill number, and suggested talking points in the coming weeks.

Written by Rick Peters

Solar is Booming in Washington DC

Washington DC has been a leader in solar development for many years.  In the last 12 years, DC legislators have set aggressive targets, helped to streamline solar permitting, introduced a solar access rights law, and passed a landmark community solar bill to increase access to solar for those without an available sunny rooftop.   Many of these policies include mechanisms to help bring the benefits of solar to communities of low and moderate income.  The collaboration between the solar industry and DC policymakers has helped to build a robust market where solar installations are happening throughout the city, from downtown office buildings to churches, warehouses and residential rooftops across the city.   These policies and the resulting private investments are creating good jobs in the District and reduced energy costs for many of its residents.

Double Down

Since solar and clean energy have been delivering in DC, the stakeholders decided they wanted a more ambitious goal.  In the summer of 2018 the District started on a path to double down with their commitment to renewable energy by proposing the most aggressive renewable energy target in the country when compared to other state policies.  The new goal calls for 100% clean energy (5.5% solar) by the year 2032, with 10% solar by 2041.  Hawaii and California are the only other states that have 100% goals, but both of those targets are positioned for 2045, quite a few years later than DC. 

Other Benefits of the legislation

In addition to doubling the renewable energy target, the proposed legislation would provide a few more benefits to solar advocates.  The bill:

  1. Limits geographic eligibility over time to concentrate the solar development in the District or on the District’s grid
  2. Pulls the current solar carve-out schedule forward by two years to increase SREC demand
  3. Extends the solar carve-out from 5.5% in 2032 to 10% by 2041
  4. Addresses specifics about previously contracted (“grandfathered”) load that is exempted from the newest RPS
  5. Includes transparency requirements on the energy suppliers to provide insight into the exempted load and associated time periods
  6. Modifies Alternative Compliance Payment (ACP) schedules to require $300 ACPs through 2041
  7. Increases the shelf-life of an SREC from three to five years, increasing SREC price liquidity and stability.
  8. Introduces various reporting requirements on the Public Service Commission in order to keep the Council and the Public apprised of the progress of renewable energy development.

We’re in the Home Stretch

The Clean Energy DC Omnibus Amendment Act of 2018 was introduced in July 2018 and made its way through the Council over the fall with hearings and two unanimous votes of support on November 27th and December 18th.  In January, the bill was submitted to Mayor Bowser for her signature and she obliged on January 18thClick here to read the bill“.   The remaining hurdle is for approval by the US Congress within 30 legislative days.  The only way that Congress can stop this legislation is with a joint resolution and the President’s signature.  As a result, passage into law is considered by most to be inevitable and in fact we are seeing market pricing for SRECs responding accordingly.

Thank your Legislators

So now that the law is almost passed, it is time to prepare to deliver.  The industry has a lot of solar to build and we’re working hard at that.  As a solar advocate who cares about renewable energy in DC, please consider taking a few moments to call or write to your Councilmember to thank them for their support of Clean Energy DC Omnibus Amendment Act of 2018.  It’s always important to show our gratitude.

Thank you for your support of solar!

Written by John Marrah III

Buy American and Save

For the month of February SES is offering $1000 off of any solar system that includes US Manufactured Panels.  That’s right, support US manufacturing and Save!  All you have to do is reference this offer during or before your site visit.

Here’s 5 More Reasons Why:

1.    Provides Jobs

The Solar Industry’s growth and inherent job creation is no secret, we are leading the pack among every other industry nationwide. Most of these jobs are being created on the installation side, but we also need to support the rest of the value chain.

2.    American Independence Includes Energy Independence

We as Americans have pride in our nation and in our independence. By generating our energy locally, with renewable resources, and US products, we strengthen our country and our independence, both individually and collectively as Americans.

3.    Do It for The Environment

Current technologies allow manufacturers in the US to support a greener, cleaner solar manufacturing process. If we invest in American-made products, we strengthen our manufacturing base, support US jobs, while insuring  that we are doing our part to contribute to a cleaner environment for ourselves, and the generations to come. Also, by reducing the need to ship overseas, the net carbon footprint is much lower

4.    We Control Labor Standards, They Don’t

The US is a leader in fair labor and safety standards. With minimum wage and safety regulations in the workplace being upheld, you can be sure that your panels are made by people who are being supported and treated fairly in the workplace.

5.    Guaranteed Quality of Goods

The term “Made in the USA” speaks of quality, excellent craftsmanship and a superior product. With a lower cost of labor abroad, many factories rely on fabrication and assembly processes by hand. This introduces higher rates of  failure when compared to the American Standard of automated soldering and assembly. While panel quality continues to improve in the aggregate, US products remain the leaders in quality and performance.  Price tags are slightly higher for Made in USA products, but you find true value among longevity and performance.

Solar Service ,Home Solar Panels
Written by Lisa Walsh

Poly Vs Mono Panels for Residential Solar Installations

IfSolar Service, Home Solar Panels,Commercial Solar Service ,Annapolis MD – like most educated consumers – you’re getting multiple quotes for your solar power installation, you’re probably having to compare between various equipment offerings by your solar vendors. Themostprominent of these offerings – both in terms of financial investment and warranty security –are the solar panels themselves.

Solar panels come in a variety of power ratings. For residential applications, the most popular panels today usually fall somewhere between 270 watts and 315 watts, with price points that usually increase with the wattage (in the standard size footprint). Less obvious, however, is the type of solar panel you may be asked to choose between.

In general, your solar quote will include a panel whose cells are made from crystalline silicon. Silicon is us

ed in solar panels not necessarily because it’s the most optimum semi-conductor available – but because of the extensive research on the processing and physics of silicon grown out of the integrated circuit industry. The processes used to access and arrange the silicon determine whether a panel is deemed to be

As the name suggests, monocrystalline panels utilize a single, continuous crystal structure in the processing of the silicon ingots from which the solar cells are made. It used to be that this high-grade silicon resulted in substantially higher efficiency rates than other solar panels. However, improvements to manufacturing in polysilicon processes have closed this gap significantly. Still, homes and businesses looking for the highest possible efficiency rating on a solar panel would likely choose a Mono panel.

The silicon ingots used for manufacturing the solar cells for Poly panels are manufactured by melting many fragments of silicon together to form the ingot. Because this results in many crystals in each cell, there is usually less freedom for the electrons to move. As a result, polycrystalline solar panels typically have lower efficiency ratings than monocrystalline panels.

Should I choose a Mono or Poly solar panel?

As with any choice it comes down to buyer preference:

Aesthetics: In general, Mono panels have more options if you are concerned with how your solar panels will look. If you want something low-profile; maybe a uniform, all-black aesthetic devoid of white lines, silver racking and diamonds – most manufacturers offer this aesthetic in a Mono panel. However, there are now a few poly panels available in all-black. For example, REC has a 280-watt poly panel on the market that is now available in all-black.

Cost:  Mono panels tend to cost more than poly panels. A small roof looking to get the highest possible solar fraction by going with a high wattage solar panel will most likely end up with a Mono panel as these include the highest wattage options (300w plus). However, if a homeowner has the roof space and is looking for the highest possible value, it may be most cost-effective expand the array by one or two more panels and go with a Poly. Many commercial applications utilize poly panels due to the focus on cost over aesthetics, particularly if the panels are not visible from the ground, due to a flat roof installation.

Performance:  Due to the amount of information out there disparaging efficacy of poly panels compared to monos, this is a subject worth broaching. It is true that under factory test conditions, poly solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. As a result, under high temperatures, poly panels would perform slightly worse than their mono counterparts. Heat can affect the production performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account. This is evidenced by the standard 25 year manufacturer’s warranty is the same for both mono and poly panels.

Residential Solar Panels ,Solar Service
Written by Lisa Walsh

Question of the Day: Will the new Administration affect my Solar Incentives?

Should we be concerned about the new Republican Administration and the future of Solar Power?

Solar Energy, Residential Solar Panels ,Solar ServiceDue to its tremendous growth, popular appeal, and ever improving economics, solar power enjoys increasingly bi-partisan support on the Hill and in Governors offices around the country.  Due to this, we predict very little, if any, impact on solar growth from the current Administration and/or a Republican Congress.  To help explain this, let’s look at the three main drivers of successful solar economics for the typical solar consumer – Federal Tax Credit, SRECs, and cost of solar equipment:

Federal Tax Credit:  30% of system cost.  This has been an enormously successful tax incentive enabling wide scale deployment of solar on both a utility and distributed scale.  Economies of scale have helped to drive the cost of solar; while further increasing demand – allowing the solar industry to grow exponentially.  This has been applauded by both major political parties for the private capital investment opportunities and huge job growth in the solar sector.   In fact, the US solar industry currently employs more people than the US oil, gas, and coal industries combined.

The 30% solar investment tax credit (ITC) was extended by Congress (many of whom were Republican) in late 2015 and is designed to decline in future years to eventually fall back to a permanent 10%.  The ITC schedule from the December 2015 legislation is as follows:

2016 – 2019: The tax credit remains at 30 percent of the cost of the system. This means that in 2017, you can still get a major discounted price for your solar panel system.

2020: Owners of new residential and commercial solar can deduct 26 percent of the cost of the system from their taxes.

2021: Owners of new residential and commercial solar can deduct 22 percent of the cost of the system from their taxes.

2022 onwards: Owners of new commercial solar energy systems can deduct 10 percent of the cost of the system from their taxes. There is no federal credit for residential solar energy systems.

In a nutshell, most in the solar industry believe it would be political suicide for the majority of congressional representatives to vote for a repeal of this enormously successful Investment Tax Credit that is scheduled to decline anyway.  There are too many solar jobs and solar projects in Republican districts for the majority of Republicans to consider advocating for repeal.  The horse is out of the barn and solar is winning!

SRECs: Maryland and Washington DC offer Solar Renewable Energy Credits to solarized homes and businesses.  This is a State/District-mandated incentive that, if anything, shows signs of expanding among the 29 States that have currently adopted an RPS (Renewable Portfolio Standard).  This is largely due to the fact that State Houses wish to support the exponential renewable energy sector job growth amidst the scheduled, declining Federal Support.

Solar Technology Costs:  Advancing technology, manufacturing scale, high adoption rates, and investor confidence in solar technology continue to drive down solar project costs.  We don’t see this momentum changing anytime soon.

Written by Lisa Walsh

First Community Solar Project in Washington DC

PRESS RELEASE

For Immediate Release

Tuesday, January 10th 2017

 

Father/Daughter Team Up for DC’s First Community Solar Project

WASHINGTON DC:  January 10th, 2017.  DC Resident Rebecca Mann and her father Neal Mann are poised to be the FIRST two PEPCO customers to take advantage of Washington DC’s newly revised and adopted Community Renewable Energy Facilities of 2016 (CREF).  After a process lasting three years, the District has finally worked out all of the kinks that enable D.C. residents to benefit from solar, even if they can’t put panels on their own roof.  Community solar offers the benefit of solar to community members (subscribers) who can’t, or prefer not to, install solar panels on their homes. This also gives renters an option to purchase solar power.

For the flagship project, Rebecca Mann is unable to install a solar power system due to limited roof space and shading constraints.  Located one mile away – her father, Neal Mann, is currently having a 16.24kW grid-tied solar power system installed.  This will generate enough power to offset a good portion of both his own, as well as his subscribing daughter’s, PEPCO utility bill —  at full retail price.

The project is currently under construction and is poised to be interconnected and officially net-metered by the end of January 2017.

Solar Energy Services, Inc. is one of the region’s longest running solar installation companies.  Founder Roger Perry has been in the solar energy industry for over 35 years.  His partner, Rick Peters, is a current Board member and past President of MDV-SEIA.  Locally owned and operated, SES installs both residential and commercial solar PV (electric), as well as solar thermal (hot water) systems in Washington DC, Maryland and Virginia.

Useful Links

PEPCO’s Green Power Connection and CREF

History of Washington DC’s Community Solar

For further information, contact:

Lisa Walsh 

Solar Energy Services, Inc. 

410-923-6090 X304

443-253-6941 Direct

Lwalsh@solarsaves.net

Written by Lisa Walsh

A Primer on Solar Power

Did you know that attempts to harness the sun’s power through the development of solar cells dates back to the late 1800’s? I am sure that this, and other information, may be new to our readers. This article will provide you with some basic facts about solar power and solar energy. That way, you can join the conversation, and the renewable energy movement!

  • The first successful solar cell was developed in the early 1950s. It was made of silicon, and able to power small electronic devices. This was hailed as the beginning of a new era of energy resources, even then being acknowledged as having the potential to offer a limitless supply of electricity.
  • The first true application of solar cells could be found in the space program at NASA and in Russia. They were the only ones who could afford this technology in the 1960s.
  • The cost of solar cells continued to decline incrementally, but not so significantly that solar was a common source of energy through the 1970s. But, as the 1980s dawned, and ever since, solar power has insinuated itself into all aspects of life, commercially and residentially.
  • The first solar panels for buildings were developed in the early 1970s. In truth, this initial foray into the potential for large scale residential solar power was actually a solar array built into a rooftop. Panel development followed, as the cost and manufacturing efficiency increased.
  • President Jimmy Carter had solar panels placed on the roof of the White House in 1979. Everyone was getting into the act!
  • Welcome to 2018. Today it is common to find solar-powered cars, solar-powered telecommunications, and even solar-powered aircraft. One car company, renowned for their progressiveness, has incorporated solar panels into the roofs of their vehicles!

But, there’s more! Technology continues to expand the horizons of solar energy, making it affordable and applicable in new ways and new places. For example, it is possible that eventually solar panels on rooftops will be replaced with solar shingles!

Or, consider this, a solar fabric is being finalized that can be attached to houses as a cooling device!

We here at Solar Energy Services are excited about the future applications of this renewable source of energy for personal and commercial uses. You can count on us to utilize our superior knowledge and expertise to your advantage. We look forward to serving you!

Residential Solar Panels, Solar Service
Written by Lisa Walsh

Coming Up! Solar Open House in Ellicott City, MD

SOLAR OPEN HOUSE with Kirk Cummings

Residential Solar Panels, Solar Service , InstallerWHEN:  Sat, Sept 17th 2016   |   2pm – 5pm

WHERE:  4919 Windpower Way, Ellicott City  MD  21403

Nothing says Sunshine’s a Wastin! like a freshly installed solar power system.  Join Kirk at this Howard County residence to get up-close-and-personal with an active solar system.  The homeowner will be on hand to answer questions about their decision-making process as well as working with SES.

Kirk will be on hand to tour the system with you and answer all of your questions onsite at the home of the Syed Family where Kirk designed and SES recently installed an 8.55k Solar power system including(30) Suniva 285 watt Solar panels and a Solar Edge Inverter System.

Solar Open House – $250 Discount!

All open house attendees who sign up for a proposal and sign their contract within 30 days will receive a $250 discount on their PV system installation.

solar energy, Solar Service ,Home Solar Panels,
Written by Rick Peters

Press Release: Solar at the Chesapeake Bay Foundation

Press Statement
6-15-15

Solar Service, Home Solar Panels, Chesapeake MDCBF Merrill Center to Install 106 kW Solar System

(ANNAPOLIS, MD) The Chesapeake Bay Foundation (CBF) and Solar Energy Services, Inc. (SES) announced an agreement today for SES to design and build a 106 kW, grid-tied solar photovoltaic system at the Philip Merrill Environmental Center, CBF’s headquarters.

The Merrill Center rooftop solar system will include more than 370 solar panels from US manufacturer SolarWorld, as well as inverter systems from Solar Edge. The panels will be installed primarily on the available roof tops, but the design also calls for some unique solar shade structures to provide additional benefits to the facility and its occupants.

SES president Rick Peters shared that SES is pleased to participate in this marquee project. “I know personally that CBF has led the way on sustainable initiatives in our region for a very long time. It is an honor to be selected to construct this project, which will help advance CBF’s message and their environmental stewardship.”

The solar system is projected to produce more than 133 MWh of electricity annually, enough to power more than 10 average Maryland homes. This will significantly offset the facility’s consumption of traditional electricity.

“While we have had solar panels at the Merrill Center in the past, we are adding this new capacity because it is now more affordable as well as more efficient,” said CBF Vice President Mary Tod Winchester. “The new array will generate enough electricity to provide one third of the power for heating, cooling, and other needs of the more than 100 staff who work here. As a non-profit, we will not benefit from the many tax incentives available, but we encourage other individuals and businesses to closely examine the costs and benefits of adding solar generation.”

The project is expected to be completed before the end of this summer.

About Solar Energy Services, Inc.

Solar Energy Services, Inc. (solarsaves.net) designs, builds and services solar power systems for institutional, commercial, and residential customers. The firm was founded by 37 year solar industry veteran Roger Perry who has longstanding ties to the communities served by SES. Based in Millersville Maryland, the 21 person firm operates in Maryland, DC, and Virginia.

About Chesapeake Bay Foundation

Founded in 1967, the Chesapeake Bay Foundation (www.cbf.org) is the largest independent conservation organization dedicated solely to saving the Bay. Serving as a watchdog, we fight for effective, science-based solutions to the pollution degrading the Chesapeake Bay and its rivers and streams. Our motto, “Save the Bay,” is a regional rallying cry for pollution reduction throughout the Chesapeake’s six-state, 64,000-square-mile watershed, which is home to more than 17 million people and 3,000 species of plants and animals.With offices in Maryland, Virginia, Pennsylvania and the District of Columbia and 15 field centers, CBF leads the way in restoring the Bay and its rivers and streams. Over the last four decades, we have created broad understanding of the Bay’s poor health, engaged public leaders in making commitments to restore the Chesapeake, and fought successfully to create a new approach to cleanup that features real accountability-the Chesapeake Clean Water Blueprint

1 2