Electric Charging, Solar, Annapolis MD
Written by Lisa Walsh

Solar Systems with Integrated Electric Vehicle Chargers

….like Peas and Carrots

Solar Panel, Solar energy, Annapolis MDAs referenced in our accompanying EV Growth Blogs, the adoption of Electric Vehicles has skyrocketed in recent years. This is small wonder considering EV purchasers can look forward to a 30% federal tax credit on the upfront cost, reduction of fuel costs of at least 60% (according to this Nissan Leaf owner’s calculations), and State Grants/tax credits where applicable (Maryland, for example) and the negation of various oil changes and maintenance costs that accompany an internal combustion engine. For homeowners who have discovered the substantial energy savings by purchasing (not leasing!) a solar residential system, it’s a natural step to want to extend these savings to their current, or future, electrified vehicle.

Ahead of the curve on this natural progression is an innovative new product from inverter manufacturer SolarEdge. All solar systems have two major components 1. Solar panel arrays 2. Inverter(s) that convert incoming DC energy to appliance-ready AC energy. As the national leader in residential inverter supply, SolarEdge made a great move in developing an Inverter that has a built-in EV Charger with a 25’ charge connector. Net energy meter customers (NEM) or energy generating customers interconnected to Pepco are not eligible to apply for the R-PIV rate.

Electric Charging,Solar, Annapolis MD

Why not choose a separate EV Charger?

Four reasons:

  1. Cost. Upgrading to an inverter that has a built-in EV Car Charger comes at around a $1000 cost increase (assuming one inverter/car charger). However, this upgrade – as part of the solar installation – qualifies for the 30% federal tax credit, putting the material cost at around the same as a separate stand-alone EV Charger such as Clipper City. In addition, the integrated inverter has no additional labor or electrician charges – its all covered in the solar install.
  2. Warranty. Popular stand-alone Car Chargers such as Clipper City come with a 3- year warranty. Solar Edge’s integrated inverter has a 12-year warranty, with upgrades up to 25 years available.
  3. Design Elegance. Between service panels, routers, generators and other wall-mounted electronics – its nice to have a 2-in-1 solution and save some wall space. No additional wiring or conduits needed. Of course, the inverter does need to be placed within 25’ of where the EV will be parked nightly.
  4. All Pros no Cons. As with Stand-alone chargers, Solar Edge’s integrated solution allows for indoor/outdoor placement, comes with a 25’ connector and offers software that tracks your EV’s energy consumption that is accessible from desktop or phone, and can be controlled remotely.

Thinking Ahead

Due to the clear advantages, and seeming inevitability of rapid EV adoption by the majority of Americans by the Year 2030, we now ask all of our prospective solar shoppers two questions:

  1. “Do you plan to buy an Electric Vehicle in the not-so-distant future?”
  2. If so, “ What is your expected weekly/annual mileage?”

Mileage calculations inform how many solar panels we should add to the array in order to cover as much EV car use as possible (as roof space allows). Worth noting for our Washington DC/Montgomery County solar customers, PEPCO does require us to fill out an Electrical Usage Calculation Sheet if the solar system is sized over 120% larger than the past 12 months usage history. In those cases we simply submit the estimated kWh increase (as per expected mileage calculations) that the EV will add.

Solar panel, solar energy,Solar in Critical Areas Annapolis
Written by John Marrah III

Solar in Critical Areas – Maryland, Virginia and Delaware

Solar Panels, Solar Energy, Solar in Critical Areas AnnapolisWhat is the Critical Area?

The Critical Area includes all land within 1,000 feet of Maryland’s tidal waters and tidal wetlands. Along our precious shoreline of the Chesapeake Bay and its tributaries, we have had many homeowners looking to take advantage of enhancing their waterfront landscape with solar panels.

Aside from the clear economic advantages, we are in solar for all the right reasons; to protect the environment, preserve our natural resources, and to leave the world a better place. With that said, installing solar in the critical areas encourages us to comply with two important regulations that ensure shoreline preservation.

Lot Coverage

In the critical area, you are allotted a certain amount of lot coverage depending on the size of your lot. Our first step in the process is to prepare a “Lot Coverage Calculation” worksheet that indicates how much lot coverage you have available and ensures that there is legally enough space to account for the square footage of your new solar panels.

Buffer Management Plan

Though lot coverage is not impacted by solar installations outside of the critical area, the total area of additional lot coverage leads us to our next calculation. The Buffer Management Plan requires that every square foot of additional lot coverage is mitigated by planting either grasses, shrubs, or trees within 100 feet of the shoreline. The goal for this mitigation is to slow down the erosion of the shoreline, and we are big supporters of this mission. There is some flexibility with the types of flora that can be planted in this area, so we consult the homeowner in selecting preferred plants for their new shoreline oasis.

Though this process involves a few more steps in terms of permits, we have become subject matter experts thanks to our waterfront solar supporters in Kent County, Queen Anne’s County, Talbot County, Dorchester County and Anne Arundel County. Every county has a slightly different twist on their permitting requirements, and this helps local companies like SES thrive.

Home Solar Panel ,Solar Service
Written by Rick Peters

Peters’ Journey to Net Zero

Solar Service,Home Solar PanelsWhat Net Zero Meant for Us? Our Severna Park based, four-person family was looking to offset some of our home’s dirty energy, but we really did not have an expectation we could offset it all, but we had to start somewhere. We took our first step shortly after I joined the solar industry in 2008.

Low Hanging Fruit. In February 2009, we installed a 120-square foot solar water heating system to offset most of our water heating, and a small portion of our space heating for the first floor of our home. We saw big savings from this 3-panel system right away. Ever since, I enjoy the act of turning off the back-up water heating in April and leaving it off until almost October. For us, offsetting a dirty and expensive oil-fired boiler was the obvious low hanging fruit. We would later convert that remaining load to natural gas when the utility extended the pipeline to our home.

Solar Electric (PV) With the rest of the heat, A/C, and appliances all running off electric, it was time to look at the next opportunity. A few years later, when budget allowed, we decided to add a 5 kW solar PV system to our second story roof which faces SSE. My best determination was that we offset just over 40% of our electric load with that PV system. We were happy, but knew we’d want to find a way to get to NetZero eventually. , . I began to evaluate the remaining rooftops and consider what it would take to get us there. Solar panel efficiencies had improved a lot over the past several years so this reduced the remaining roof space we’d need to hit our goal

Phase 2 (PV). In the spring of 2016 we finished filling the balance of the south roof with some slightly higher wattage panels. As part of the same expansion, we added 24 relatively high efficiency panels to the E/W, low slope, rooftop of our one-story garage. We now had a total of 6.6 kW Equivalent of solar thermal and 13.8 kW of PV.

Not There Yet….We almost tripled our PV with the last upgrade and according to my calculations, this would get us to NetZero electricity. We’d know for sure by April, the annual true-up time frame for netmetering with BGE. When April 2017 came around, we were disappointed to come up a bit short (unfortunately, with a couple teenagers in the house, my usage predictions were a little off). Where do we go from here? I was not ready to put panels on the north roof, there had to be something available to us on the demand side.

Oops – More Low Hanging Fruit…One thing about Energy Efficiency, there’s always more opportunity. I had changed out many bulbs to LED over the prior several years, mostly through attrition, but I had not replaced any of the more than 2 dozen canister lights we had throughout the ceiling upstairs and down. Not only were these lights very inefficient, but the heat they generated in the summer was just adding to our air-conditioning load. We found the LED replacements on sale and replaced them all, as well as the remaining few incandescent lights in the house.

Commercial Solar Energy,Solar ServiceEureka. we have arrived!… In April of 2018 we received a $46 check from BGE for the annual overage from solar. With the kids heading off to college soon and a new refrigerator around the corner, I’m confident our checks from BGE will be getting bigger for the near future. At least until we purchase an electric car…

Solar Service,Commercial Solar Service
Written by Lisa Walsh

The Fairytale of the 25 year Solar Workmanship Warranty

Commercial Solar Service,Solar ServiceIf you’re like most solar shoppers, you prefer two or three bids on a substantial home improvement project; enabling you to sanity-check pricing, design options and find the overall best contractor-fit.  Included in these proposal comparisons is the Warranty. Most solar systems come with 3 warranties:

  1. Solar module manufacturer’s warranty; usually 25 – 30 years,
  2. Inverter(s) manufacturer’s warranty; usually 10 – 25 years (inverters convert DC energy to home-accessible AC energy)
  3. Workmanship warranty – entirely separate from 1 & 2 above. This insures the design and installation, insofar as contractor/labor portion of your install is covered for a given period of time, as determined by the installation company.

Industry Standard

As the popularity of solar has increased – so has the number of competing contractors and their accompanying solar proposals. All of these proposals should include a workmanship warranty. What will differ is the duration of the workmanship warranty. The standard duration for a residential solar system was always 5 – 10 years until a couple of years ago when some contractors started offering an unprecedented 25-year workmanship warranty. This is a good thing, right? On paper…sure.

Compete only to Beat

With over 35 years in the solar industry, it’s fair to say we’ve seen a lot of solar installers come and go; especially in the last five years. The go-ing usually brings with it a slew of phone calls to our service department as solar system owners panic about no longer having their contractor around to honor the workmanship warranty; particularly those looking to resolve existing issues. Ironically, these are sometimes homeowners that chose the contractor over us due to a workmanship warranty of shorter duration. We have stuck with the industry-standard of 10 years, whereas some other installers have increased to 25 years to match the manufacturer warranties.

So, the big question – and the reason for this current article is – Why? If some of our competitors are offering a 25-year warranty – why don’t we? Seems only natural, given the fact that we’ve been in business for longer than 99% of them – greatly increasing the probability that we’ll be around to honor an extended workmanship warranty.

The Big Answer (in two parts)

  1. We’re keeping it Real: Understandably, a 25-year workmanship warranty is attractive to a homeowner because – by design – it matches the 25-year solar panel warranty. This does not change the fact that a workmanship warranty exists entirely independent of the installed equipment warranty(s). A contractor’s history, fiscal health and future plans have little or nothing to do with the equipment warranties. Given this, we avoid inflating the language in our contracts to provide misleading comfort to a home or business owner, with the sole purpose of beating out the competition at contract-signing time.
  1. We’re still keeping it Real: Of all the orphaned solar projects we’ve come across – we cannot cite a single known instance where a homeowner has taken legal action over an abandoned workmanship warranty item; simply not worth the court fees or the hassle. Most exert their energy on finding a contractor who will fix the problem as soon as possible and get their solar system restored to full working condition. Hence, the true value of the workmanship warranty is contractor integrity and the likelihood of whether they both intend to and will remain in business to honor their contractual agreement. For most solar contractors, the standard ten-year commitment reflects a realistic forecast of longevity and commitment; avoiding the temptation to head off into fairytale land in order to beat-out the competition.
Residential Solar Panels, Solar Service
Written by Lisa Walsh

Diagnosing and Preventing Critter Damage to Solar Panel Arrays

Solar Service ,Home Solar Panels It’s no secret that hundreds of thousands of homes have installed roof mounted solar panels, with that number increasing with each passing day. The upward trend brings increasing problems that arise when tech meets nature. In an acorn shell we’re talking critters who nest, feed, chew and live their critter lives in and around solar panel installations.

Which Critters?

Any animal that can fit under your array poses a risk to a solar installation. Pigeons and other birds looking for a warm/safe place to build nests may do so under a solar array. This doesn’t usually cause any malfunction to the system. However, water build-up and bird waste may cause minor roof damage and may be more of a nuisance than anything.

Squirrels, mice and rats, on the other hand, can wreak havoc on a solar system. These members of the rodent-family have teeth that require filing down throughout the course of their lifetime. The wires, plastic connectors and small parts that run underneath the panels can be excellent teeth-filing equipment. We have seen squirrels chew the outer plastic covering of wires, as well as penetrate junction boxes on the back of panels and chew into the solar panel interiors. This type of damage will cause panels and even whole systems to cease power production.

Solar Service, Home Solar Panels ,Washington DC SolarWho’s at Risk?

Any solar system can be susceptible to critter damage. However, those most at risk are usually systems that are in wooded areas; particularly where tree branches extend close to the rooftops, allowing easy access for squirrels to make the jump from branch to solar system array. Although many homes and businesses fit this description, it’s also worth mentioning that for every critter complaint we’ve had – there are 20 or 30 more systems that have had NO issues with critters. However, it’s also worth mentioning that most of our customers are no more than 10 years into a 25 – 40-year solar system lifespan. Time will tell what the probability of critter-damage risk over a system’s lifetime will end up being.

Detecting and Diagnosing the Damage

Most solar system owners first become aware of a problem when their solar system does not seem to be producing as well as it used to. For homeowners with online monitoring, they may see that a string of panels – or individual panels (in the case of those systems outfitted with a microinverters or optimizers) are no longer registering power output. Others may hear scampering around on their roofs and may notice their utility bills creeping up. That’s when they call our service department. Our technicians need to remove and inspect each panel, as well as their connecting cables, suspected of damage. In most cases, we can remediate the wire damage onsite without engaging the solar panel manufacturer for a replacement panel. Whether this takes removal of every solar panel, or just a few – depends on the extent of the damage or ability to detect the extent of the damage.

Home Solar Panels,Solar Service, InstallationInstalling Critter Guard

There are a variety of anti-small-animal solutions out there for solar systems designed to create a barrier around the perimeter of the solar system. We usually choose the one most compatible with your solar system; depending on the type of racking initially installed. Most critter guards are made of some type of strong steel-mesh screen and they do not require drilling into the roof.

One of our more popular systems, the aptly named “Critter Guard” employs clips that attach to the bottom flange of the module frame and have hooks to snap the screen into place. The clips are painted steel and can be snapped to the appropriate length to accommodate height variations so there are no small spaces that accommodate a small animal. The mesh screen is vinyl-coated steel, rigid enough to keep out even the most industrious squirrel.

Residential Solar Panels ,Solar ServiceCritter Guard is now a standard option that we offer to our customers and we strongly encourage it when the structure has trees that are encroaching on the rooftop. While the tree branches may not be close enough today to make contact with the roof, over time, if not maintained, they can grow out to become that ideal path to an appealing new nesting site.

What are the costs involved?

The costs are always less if you can prevent the problem in the first place. Adding Critter Guard at the time of installation typically costs from $500 – $2000 depending on the size of your system; but of course this cost is integral to the solar system so most tax advisors would agree that the 30% tax credit would apply.

The costs for any rodent damage remediation will depend on the extent of the damage. Critter damage is not related to defects in installation covered under our standard Workmanship Warranty; neither will most solar panel/inverter manufacturers consider this damage a Material defect. Our service department charges Hourly-Time + Materials. These costs may range anywhere from $500 to $4000 for a mid-sized solar system including all remediation and installation of Critter guard to prevent further damage. We recommend inquiring with your home’s insurance agent to see if the costs can be covered under your homeowner’s insurance policy.

Solar Service ,Home Solar Panels
Written by Lisa Walsh

Poly Vs Mono Panels for Residential Solar Installations

IfSolar Service, Home Solar Panels,Commercial Solar Service ,Annapolis MD – like most educated consumers – you’re getting multiple quotes for your solar power installation, you’re probably having to compare between various equipment offerings by your solar vendors. Themostprominent of these offerings – both in terms of financial investment and warranty security –are the solar panels themselves.

Solar panels come in a variety of power ratings. For residential applications, the most popular panels today usually fall somewhere between 270 watts and 315 watts, with price points that usually increase with the wattage (in the standard size footprint). Less obvious, however, is the type of solar panel you may be asked to choose between.

In general, your solar quote will include a panel whose cells are made from crystalline silicon. Silicon is us

ed in solar panels not necessarily because it’s the most optimum semi-conductor available – but because of the extensive research on the processing and physics of silicon grown out of the integrated circuit industry. The processes used to access and arrange the silicon determine whether a panel is deemed to be

As the name suggests, monocrystalline panels utilize a single, continuous crystal structure in the processing of the silicon ingots from which the solar cells are made. It used to be that this high-grade silicon resulted in substantially higher efficiency rates than other solar panels. However, improvements to manufacturing in polysilicon processes have closed this gap significantly. Still, homes and businesses looking for the highest possible efficiency rating on a solar panel would likely choose a Mono panel.

The silicon ingots used for manufacturing the solar cells for Poly panels are manufactured by melting many fragments of silicon together to form the ingot. Because this results in many crystals in each cell, there is usually less freedom for the electrons to move. As a result, polycrystalline solar panels typically have lower efficiency ratings than monocrystalline panels.

Should I choose a Mono or Poly solar panel?

As with any choice it comes down to buyer preference:

Aesthetics: In general, Mono panels have more options if you are concerned with how your solar panels will look. If you want something low-profile; maybe a uniform, all-black aesthetic devoid of white lines, silver racking and diamonds – most manufacturers offer this aesthetic in a Mono panel. However, there are now a few poly panels available in all-black. For example, REC has a 280-watt poly panel on the market that is now available in all-black.

Cost:  Mono panels tend to cost more than poly panels. A small roof looking to get the highest possible solar fraction by going with a high wattage solar panel will most likely end up with a Mono panel as these include the highest wattage options (300w plus). However, if a homeowner has the roof space and is looking for the highest possible value, it may be most cost-effective expand the array by one or two more panels and go with a Poly. Many commercial applications utilize poly panels due to the focus on cost over aesthetics, particularly if the panels are not visible from the ground, due to a flat roof installation.

Performance:  Due to the amount of information out there disparaging efficacy of poly panels compared to monos, this is a subject worth broaching. It is true that under factory test conditions, poly solar panels tend to have slightly lower heat tolerance than monocrystalline solar panels. As a result, under high temperatures, poly panels would perform slightly worse than their mono counterparts. Heat can affect the production performance of solar panels and shorten their lifespans. However, this effect is minor, and most homeowners do not need to take it into account. This is evidenced by the standard 25 year manufacturer’s warranty is the same for both mono and poly panels.

Residential Solar Panels S,olar Service
Written by Lisa Walsh

Solar Financing via Maryland’s Be Smart Loan Program

Residential Solar ,Panels Solar ServiceSolar Energy Services, Inc. recently became an approved contractor with the Be SMART Home Loan Program. This State of Maryland financing vehicle offers unsecured loans of up to $30,000 at a 4.99% interest rate. Aimed towards Maryland residents looking to lower utility costs, improve energy efficiency and add value to their Maryland home. The following solar projects qualify:

Solar Electric (Photovoltaic) Systems

These grid-tied solar systems give homeowners the option of purchasing more than 25yr worth of electricity at a fraction of the cost of their “rented” utility rates. Systems are purchase outright, and are eligible for the multiple financial incentives currently available.

Solar Water Heating (Thermal)

These systems are entirely separate from solar electric (PV) systems. They are most cost-effective for a Maryland family of 4 or more who currently heats their home’s water with electric, propane or oil. They require a relatively small amount of roof space and the upfront investment is lower than solar electric.

What are the Loan Qualifications and requirements?

  • Maryland resident
  • Home Owner
  • Verification of income
  • Credit score over 640
  • Debt-to-income ratio below 50%
  • Completion of a home energy audit

There is up to $30,000 in financing available for eligible homeowners.

What other upgrades qualify for the Be Smart Loan program?

Other qualifying energy efficiency upgrades throughout the home could include: energy efficient roof replacement, geothermal system, air infiltration reduction measures, increased insulation, hot water system improvements, heating systems maintenance or replacement, programmable thermostats, ceiling fans, windows, doors, duct work and energy star appliance replacement.

Can any Contractor perform the work?

Contractors must be listed on the State of Maryland’s Approved Contractor List as found here: http://dhcd.maryland.gov/Residents/Documents/besmart/BeSMARTApprovedContractors.pdf

How do I Apply?

  1. 1. Schedule a solar site visit with Solar Energy Services, Inc.
  2. Submit the Be Smart Home Loan Application along with SES’s proposal of work to be performed
  3. Be SMART will processes your Home loan application. Approval is based on your proposal specifications, satisfactory credit and affordability
  4. Submit your Home Energy Audit from an Approved Contractor
  5. You receive Loan Approval along with the first of two project pay-outs
  6. Upon receipt of payment, your Be SMART Contractor, SES, moves forward with interconnection, permitting and subsequent solar panel installation.
  7. The final payment is provided by DHCD when the work is complete and a DHCD inspector confirms that the work meets specifications

MORE INFORMATION

CONTACT: BeSMART Home Loan Program

Community Development Administration

Maryland Department of Housing and Community Development

E: BeSmartHome.dhcd@maryland.gov​

P: 301-429-7402 ​​​​

Or

info@solarsaves.net

410-923-6090

Written by Lisa Walsh

First Community Solar Project in Washington DC

PRESS RELEASE

For Immediate Release

Tuesday, January 10th 2017

 

Father/Daughter Team Up for DC’s First Community Solar Project

WASHINGTON DC:  January 10th, 2017.  DC Resident Rebecca Mann and her father Neal Mann are poised to be the FIRST two PEPCO customers to take advantage of Washington DC’s newly revised and adopted Community Renewable Energy Facilities of 2016 (CREF).  After a process lasting three years, the District has finally worked out all of the kinks that enable D.C. residents to benefit from solar, even if they can’t put panels on their own roof.  Community solar offers the benefit of solar to community members (subscribers) who can’t, or prefer not to, install solar panels on their homes. This also gives renters an option to purchase solar power.

For the flagship project, Rebecca Mann is unable to install a solar power system due to limited roof space and shading constraints.  Located one mile away – her father, Neal Mann, is currently having a 16.24kW grid-tied solar power system installed.  This will generate enough power to offset a good portion of both his own, as well as his subscribing daughter’s, PEPCO utility bill —  at full retail price.

The project is currently under construction and is poised to be interconnected and officially net-metered by the end of January 2017.

Solar Energy Services, Inc. is one of the region’s longest running solar installation companies.  Founder Roger Perry has been in the solar energy industry for over 35 years.  His partner, Rick Peters, is a current Board member and past President of MDV-SEIA.  Locally owned and operated, SES installs both residential and commercial solar PV (electric), as well as solar thermal (hot water) systems in Washington DC, Maryland and Virginia.

Useful Links

PEPCO’s Green Power Connection and CREF

History of Washington DC’s Community Solar

For further information, contact:

Lisa Walsh 

Solar Energy Services, Inc. 

410-923-6090 X304

443-253-6941 Direct

Lwalsh@solarsaves.net

Washington DC Solar, solar renewable Energy,
Written by Lisa Walsh

Washington DC Solar Owners and Selling Solar RECs Upfront

Solar Service ,Home Solar Panels

Before we dive into this conversation – let’s be clear that SRECs (Solar Renewable Energy Credits) can be the most confusing part of figuring out the economics of a solar project.  Let’s also be clear that – as with anything confusing, (as well as possibly boring) – the temptation is to remove the confusion as quickly as possible.   In the world of solar installation and selling SRECs this sometimes translates to simply selling up to 15yrs of SRECs all at once to a solar installation company, who then installs the system at a bargain price.  Buyer beware – the immediate gratification of selling all of your SRECs in one fell swoop could be misleading.   When it comes to How and When you get paid for your SRECs “…the Sooner the Better”  may not be a sound financial strategy.

That said…Let’s talk Solar Renewable Energy Credits in Washington DC.

Both Maryland and Washington DC, along with eight other states have enacted the Renewable Portfolio Standards which specify that a certain amount of the renewable energy generated within that state must come from solar.   Whether residential, commercial, or institutional, each time a solar system generates 1 Megawatt hour of energy – the solar system owner generates 1 SREC.  This SREC is then sold via aggregators to an  SREC market where it is bought by Power Companies to allow them to meet their share of the compliance obligation, or else pay a legislated fine (Alternative Compliance Payment, or ACP) for every SREC they are short.  Washington DC currently generates the highest SREC values in the country largely due to the fact that the District does not have the real estate to install large solar farms which can oversupply the market and drive down SREC prices.

How Much is an SREC worth?

The value of an SREC in a particular market is dynamic due to two primary factors

  1. by design, SRECs values are intended  to decline over time.  The legislated ACP which serves as a ceiling to the SREC price is usually scheduled to decline in future years. Among other factors, increased installations should lead to decreased system costs and less need for SRECs to help finance a solar system.
  2. The other reason for variations is due to market mechanisms.  Brokers buy and sell SRECs in order to help make a market for them.  When the market is undersupplied, SRECs trade high, at a price close to the penalty (ACP).  This is good for those selling SRECs.  If the market is oversupplied (like Maryland is currently), then SREC prices in that market will decline well below the penalty – not so good for those selling SRECs. Varying SREC payment options are intended to allow system owners to buy down their SREC price risk. The difference between an Upfront Payment option and a Brokerage Payment option (market price) can be many thousands of dollars to a solar system owner.  In an undersupplied market like DC, where there is very little price risk for SRECs, that upfront payment option leaves a lot of money on the table.

How many SRECs will my system generate?

The number of SRECs any given system will generate depends upon the output of your system.  For example, an optimized (as in good and sunny) 5.0 kW system in Washington DC would generate close to 6.0 SRECs/year.

How and When would I receive my SREC income?

SRECs are most commonly sold through an SREC aggregator/broker such as Washington DC-based SolSystems.  However, SRECs here in the District are so valuable – as well as stable – that solar panel contractors are also offering to buy your SRECs and simply deduct the upfront payment off the cost of your solar installation.  So THIS is the heart of this article:  Solar owners have 3 choices for how to get paid for their SRECs:

  1. Upfront Payment (all SRECs are forfeited for a 5yr or 15yr period)
  2. 3yr, 7yr or 10yr Annuity Contract (SREC prices Locked-in for a specific term)
  3. Brokerage (Current market price less broker commission).

Sticking with the aforementioned 5kW system example, the following table illustrates projected SREC values for the system, using current SREC prices (November 2016) offered by a competitive SREC aggregator).

System Size = 5kW                            SREC per Year = 6

So, reviewing the column above, this Washington DC Homeowner with a 5.0kW system has these financial options to choose from:

$$$$$:  Brokerage = $32,101.85 over 25yr life of systems (as warrantied)

$$$:  *Annuity =  $18,690 guaranteed then sign-up for another annuity or go Brokerage

$:  Upfront = $8025.60  SRECs cannot be sold again until 2032.

*Annuity is also available in 3 or 5 yr increments, as well as the 10yr

The Brokerage price is exponentially higher than the other prices, does that mean there’s a lot of risk?

Some risk – yes, because you’re not locked-in to a static price.   But remember – historically DC SREC pricing has remained stable (the geography does not accommodate  huge solar farms that can flood the DC SREC market).  You can receive an email monthly that allows you to check on current pricing AND should the price start to decline – you can, at any point in time, switch to an Annuity.  .

If I choose the 10yr Annuity Option and lock-in my SREC pricing, what happens at the end of that time period?

You simply choose another payment option being offered at the time of contract experation.  Maybe you’ll opt for brokerage – or another annuity, up to you.  Same with the Upfront Payment, after 15 years.

How do I receive my SREC income?

Via check from the SREC aggregator which most pay quarterly (except with the Upfront Payment option which would be one-time).   This generally starts around two months after your system has been interconnected by your Utility and the SREC contract set-up.   We do advise that the contractual SREC relationship be kept between a professional broker/aggregator and the solar system owner.  Third parties, such as the solar panel installation company, may find themselves in a conflict of interest.

If the solar system installer is not buying my SRECs, who sets up the contract?

Most reputable solar panel installation companies will coordinate the initial set-up of your SREC contract with an SREC aggregator, as they have immediate access to the documents required for the initial set-up (Passed Building Permit, Interconnection Approval etc.).  Many installers have one or two aggregators they’re used to dealing with – or you may choose your own.

Eastern Shore MD,Solar Service, Home Solar Panels
Written by Lisa Walsh

Non-South facing solar panel installs in Maryland, DC and Virginia

The Design

Eastern Shore ,MD,Solar Service, Home Solar PanelsWhen planning a solar panel system for your home, the first consideration for any solar designer is the tilt and orientation of your roof areas.  We need to know which roof(s) will ensure the most optimum solar output – which translates to the best Return on Investment.   For us here in Maryland, the most optimum solar roof orientation is Due South at 180 degrees.  Of course, not everyone has this perfectly oriented roof and our customer base consists of homes that have South, West, East and everything-in-between orientations.  Occasionally we even install on North-facing roofs if the pitch of the roof is low enough that panels are close to flat, or can be tilted southerly.

For homes that face East-West, you may be wondering which roof would best suited for solar.  This is a good question given the fact that the output of your solar panels is directly related to your Return on Investment and how quickly the panels can pay for themselves.

If either East or West favors a more Southerly angle, then that would likely be a more favorable roof.  Assuming that there aren’t issues related to shadingor obstructions caused by chimneys, vents, skylights and other roof-placed items.

If the house has a perfectly split East-West orientation, with all things equal – the next consideration would be roof angle; the lower the tilt (i.e. closer to horizontal) – the more solar energy will be generated over the course of the day.  If the tilt on either side is the same then we would usually favor the West facing side.   Here in Maryland, DC and Virginia we tend to have cloudier mornings, and sunnier afternoons going into dusk.  Therefore we want to capture the late afternoon sun (west facing) more than early morning sun (East facing).  Of course, should you happen to have a tree, chimney or other obstructing factor(s) on the West roof – we’d favor the East.

The Economics

Homeowners looking at an East-West installation often have concerns as to whether or not their system will be profitable enough, compared to its south-facing counterparts.    Disqualifiers for cost-effective solar systems include shading and limited available roof space.  Rarely, however, is a home found unsuitable due to a Non-Southerly facing roof alone.

To illustrate, following is a comparison of a 10kW system’s output respective to East, West and South facing orientations.  Data compiled using the National Renewable Energy Laboratory (NREL) weather data patterns for Baltimore, MD –

10kW system installed on a 20 degree pitched roof with zero shade

 SOUTH (180 degrees)WEST (270 degrees)EAST (90 degrees)
ANNUAL OUTPUT13,224kWh11,389kWh11,328 kWh
*Annual $avings$1853 per year$1594 per year$1586

*Savings based on a conservative $3.00/watt installation, and $0.14/watt BGE rate

Data from PV WATTS

As illustrated, although perfectly South would be ideal, the East and West orientations provide a competitive amount of solar and would add only a few months to the payback period.  If you were choosing between East and West (as opposed to installing on both), the difference is nominal.  The choice of which roof may come down to aesthetic preference, distance to utility meter and regional weather patterns.

1 2 3